Effects of Applied Pressure on Densification During Sintering in the Presence of Liquid Phase

  • W. D. Kingery
  • J. M. Woulbroun
  • F. R. Charvat


Experimental measurements of the effects of an applied pressure on sintering of powdered materials containing a liquid phase indicate that the applied pressure can be effective by: (a) increasing the extent and rate of particle rearrangement, (b) increasing the rate of solution at particle contacts, and (c) causing plastic flow within the solid particles. Which of these processes predominates depends on the characteristics of each particular system and on the level of applied pressure.


Applied Pressure Densification Rate Sinter Rate Rapid Densification United States Atomic Energy Commission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. (a.)
    G. C. Kuczynski, ‘Self-Diffusion in Sintering of Metallic Particles’, J. Metals, 1 [2]; Trans. AIME, 185 [2] 169-78 (1949).Google Scholar
  2. 1. (b).
    W. D. Kingery and M. Berg, ‘Study of the Initial Stages of Sintering Solids by Viscous Flow, Evaporation-Condensation, and Self-Diffusion’, J. Appl. Phys., 26 [10] 1205–12 (1955); Ceram. Abstr., 1956, February, p. 45c.CrossRefGoogle Scholar
  3. 1. (c).
    J. E. Burke, ‘Role of Grain Boundaries in Sintering’, J. Am. Ceram. Soc., 40 [3] 80–85 (1957).CrossRefGoogle Scholar
  4. 1. (d.)
    R. L. Coble, ‘Initial Sintering of Alumina and Hematite’, J. Am. Ceram. Soc., 41 [2] 55–62 (1958).CrossRefGoogle Scholar
  5. 1. (e.)
    R. L. Coble, ‘Sintering Crystalline Solids: I, Intermediate and Final State Diffusion Models’, J. Appl Phys., 32 [5] 787–92 (1961); Ceram. Abstr1961, November, p. 274f.CrossRefGoogle Scholar
  6. 2.
    W. D. Kingery, ‘Densification During Sintering in the Presence of a Liquid Phase: I, Theory’, J. Appl Phys., 30 [3] 301–306 (1959); Ceram. Abstr., 1960, July, p. 171c.CrossRefGoogle Scholar
  7. 3. (a.)
    W. D. Kingery and M. D. Narasimhan, ‘Densification During Sintering in the Presence of a Liquid Phase: II, Experimental’, J. Appl. Phys., 30 [3] 307–10 (1959); Ceram. Abstr., 1960, July, p. 171d.CrossRefGoogle Scholar
  8. 3. (b.)
    W. D. Kingery, E. Niki, and M. D. Narasimhan, ‘Sintering of Oxide and Carbide-Metal Compositions in Presence of a Liquid Phase’, J. Am. Ceram. Soc., 44 [1] 29–35 (1961).CrossRefGoogle Scholar
  9. 4.
    J. Wulff, J. H. Brophy, and L. A. Shepard, ‘The Nickel Activated Sintering of Tungsten’; p. 113 in Powder Metallurgy—Proceedings of an International Conference, New York, 1960. Edited by Werner Leszynski. Interscience Publishers, New York, 1961. 847 pp.; Ceram. Abstr., 1962, August, p. 203b.Google Scholar
  10. 5.
    P. Murray, D. T. Livey, and J. Williams, ‘Hot Pressing of Ceramics’; pp. 147–171 in Ceramic Fabrication Processes, (W.D. Kingery, editor). Technology Press of Massachusetts Institute of Technology and John Wiley & Sons, Inc., New York, 1958, 235 pp.; Ceram. Abstr., 1958, May, p. 123h.Google Scholar
  11. 6.
    J. K. Mackenzie and R. Shuttleworth, ‘Phenomenological Theory of Sintering’, Proc. Phys. Soc. (London), 62 [360B] 833–52 (1949); Ceram. Abstr., 1950, May, p. 108e.Google Scholar
  12. 7.
    G. E. Mangsen, W. A. Lambertson, and B. Best, ‘Hot Pressing of Aluminium Oxide’, J. Am. Ceram. Soc., 43 [2] 55–59 (I960).Google Scholar
  13. 8.
    Thomas Vasilos, ‘Hot Pressing of Fused Silica’, J. Am. Ceram. Soc., 43 [10] 517–19 (1960).CrossRefGoogle Scholar
  14. 9.
    J. Williams, ‘Hot Compacting of Metal Powders’, Symposium on Powder Metallurgy, 1954, Spec. Rept., No. 58, Iron Steel Inst., pp. 112-24 (published 1956). 390 pp.Google Scholar
  15. 10.
    E. J. Felten, ‘Hot Pressing of Alumina Powders at Low Temperatures’, J. Am. Ceram. Soc., 44 [8] 381–385 (1961).CrossRefGoogle Scholar
  16. 11.
    A. C. Vaughn, ‘Bi-Cu Bismuth Copper’; p. 1178 in Metals Handbook. Edited by Taylor Lyman. The American Society of Metals, Cleveland, Ohio, 1948. 1332 pp.Google Scholar
  17. 12.
    G. Baumé and W. Borowski, ‘Systems CH30H-H20’, J. Chim. Phys., 12, 276 (1914).Google Scholar
  18. 13.
    A. E. Gorum, E. R. Parker, and J. A. Pask, ‘Effect of Surface Conditions on Room-Temperature Ductility of Ionic Crystals’, J. Am. Ceram. Soc., 41 [5] 161–64 (1958).CrossRefGoogle Scholar

Copyright information

© Elsevier Science Publishers Ltd 1990

Authors and Affiliations

  • W. D. Kingery
    • 1
  • J. M. Woulbroun
    • 1
  • F. R. Charvat
    • 2
  1. 1.Ceramics Division, Department of MetallurgyMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Technology DepartmentUnion Carbide Metals CompanyNiagara FallsUSA

Personalised recommendations