Structure and Thermomechanical Properties of Partially Stabilized Zirconia in the CaO-ZrO2 System

  • Ronald C. Garvie
  • Patrick S. Nicholson


Partially stabilized zirconia (PSZ) ceramics in the system CaO-ZrO2 were characterized. The microstructure, as revealed by optical microscopy, consisted of grains of pure ZrO2 distributed in a matrix of fully stabilized material. Electron microscopy showed that the matrix grains have a complex substructure of 1000-Å domains of cubic and monoclinic ZrO2. The grains appeared to fit Ubbelohde’s concept of a hybrid single crystal. Evidence obtained indicated that the substructure provides an effective stress-relieving mechanism during thermal shock. It is proposed that initiation of phase inversion in pure ZrO2 domains, even at subtransition temperatures (by thermal stresses), creates an extremely large microcrack density. On the basis of Hasselman’s thermal-shock criterion, only quasi-static crack propagation occurs during thermal shock of PSZ; evidence is presented to support this concept.


Thermal Shock Crack Density Thermomechanical Property American Ceramic Society Partially Stabilize Zirconia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. E. Curtis, ‘Development of Zirconia Resistant to Thermal Shock’, J. Amer. Ceram. Soc., 30(6), 180–96 (1947).CrossRefGoogle Scholar
  2. 2.
    R. C. Garvie, ‘The Cubic Field in the CaO-ZrO2 System,’ ibid., 51(10), 553–56 (1968).Google Scholar
  3. 3.
    A. G. Karaulov, A. A. Grebenyuk and I. N. Rudyak, ‘Effect of Phase Composition of Zirconium Dioxide on Spalling Resistance,’ Izv. Akad. Nauk SSSR, Neorg. Mater., 3(6), 1101–1103 (1967).Google Scholar
  4. 4.
    O. J. Whittemore, Jr. and N. N. Ault, ‘Thermal Expansion of Various Ceramic Materials to 1500°C,’ J. Amer. Ceram. Soc., 39(12), 443–44 (1956).CrossRefGoogle Scholar
  5. 5.
    L S. Alekseenko, I. S. Kainarskii and E. V. Degtyareva, ‘Methods of Improving Spalling Resistance of Hot Pressed Zirconia,’ Ogneupory, 31(12), 40–45 (1966).Google Scholar
  6. 6.
    A. G. King and P. J. Yavorsky, ‘Stress Relief Mechanisms in Magnesia- and Yttria-Stabilized Zirconia,’ J. Amer. Ceram. Soc., 51(1), 38–42 (1968).CrossRefGoogle Scholar
  7. 7.
    R. C. Garvie, ‘Theory of Enhanced Thermal Shock Resistance in Partially Stabilized Zirconia Ceramics’; presented at the Fall Meeting of the Basic Science Division of the American Ceramic Society, Ottawa, Ontario, Canada, September 30, 1969 (Paper No. 28-B-69F); for abstract see Amer. Ceram. Soc. Bull., 48(8), 825 (1969).Google Scholar
  8. 8.
    D. Viechnicki and V. S. Stubican, ‘Mechanisms of Decomposition of Cubic Solid Solutions in the System ZrO2-MgO,’ J. Amer. Ceram. Soc., 48(6), 292–97 (1965).CrossRefGoogle Scholar
  9. 9.
    A. R. Ubbelohde, ‘Thermal Transformations in Solids,’ Quart. Rev. Chem. Soc., 11, 246–72 (1957).CrossRefGoogle Scholar
  10. 10.
    C. F. Grain and R. C. Garvie, ‘Mechanisms of the Monoclinic to Tetragonal Transformation of Zirconium Dioxide,’ U.S. Bur. Mines, Rep. Invest. No. 6619, 1965.Google Scholar
  11. 11.
    T. Buljan, H. A. McKinstry and V. S. Stubican, ‘Strain Measurements During the Transition Zr02 (Monoclinic) Zr02 (Tetragonal)’; presented at the 73rd Annual Meeting, The American Ceramic Society, Chicago, 111., April 26, 1971 (Basic Science Division, No. 6-B-71); for abstract see Amer. Ceram. Soc. Bull., 50(4), 366 (1971).Google Scholar
  12. 12.
    D. P. H. Hasselman, ‘Thermal Stress Crack Stability and Propagation in Severe Thermal Environments’; presented at the Conference on Ceramics in Severe Environments, Raleigh, N.C., 1970.Google Scholar
  13. 13.
    J. Cook and J. E. Gordon, ‘Mechanism for Control of Crack Propagation in All-Brittle Systems,’ Proc. Roy. Soc., Ser. A., 282(1391), 508–20 (1964).CrossRefGoogle Scholar
  14. 14.
    E. D. Whitney, ‘Electrical Resistivity and Diffusionless Phase Transformations of Zirconia at High Temperatures and Ultra-High Pressures,’ J. Electrochem. Soc., 112(1), 91–94 (1965).CrossRefGoogle Scholar
  15. 15.
    G. L. Kulcinski, ‘High-Pressure Induced Phase Transition in ZrO2,’ J. Amer. Ceram. Soc., 51(10), 582–84 (1968).CrossRefGoogle Scholar
  16. 16.
    G. M. Wolten, ‘Diffusionless Phase Transformations in Zirconia and Hafnia,’ ibid., 46(9), 418–22 (1963).Google Scholar
  17. 17.
    M. E. Fine, Introduction to Phase Transformations in Condensed Systems; p. 23. Macmillan Co., New York, 1964.Google Scholar
  18. 18.
    J. F. Nye, Physical Properties of Crystals; p. 296. Oxford University Press, New York, 1957.Google Scholar
  19. 19.
    R. Jaeger and R. Nickel, Thermal Shock Application for Ceramics in Continuous Copper Casting,; presented at the Conference on Ceramics in Severe Environments, Raleigh, N.C., 1970.Google Scholar
  20. 20.
    R. E. Cech and D. Turnbull, ‘Heterogeneous Nucleation of the Martensite Transformation,’ Trans. AIME, 206, 124–32 (1956).Google Scholar
  21. 21.
    G. K. Bansal and A. H. Heuer, ‘Deformation Substructure in Unstabilized Zirconia’; presented at 72nd Annual Meeting, The American Ceramic Society, Philadelphia, Pa., May 5, 1970 (Basic Science Division, No. 13-B-70); for abstract see Amer. Ceram. Soc. Bull., 49(4), 386 (1970).Google Scholar

Copyright information

© Elsevier Science Publishers Ltd 1990

Authors and Affiliations

  • Ronald C. Garvie
    • 1
  • Patrick S. Nicholson
    • 1
  1. 1.Department of Metallurgy and Materials ScienceMcMaster UniversityHamiltonCanada

Personalised recommendations