Advertisement

Silicon and Carbon—The Key Elements in High Performance High Temperature Composites

  • E. Fitzer

Abstract

Fibre reinforced ‘all-carbon’ composites, the so-called carbon/carbon composites, have achieved high performance and are applied in critical structural parts for high temperature uses [1,2].

Silicon ceramics, SiC and Si3N4, on the other hand, have been applied for decades as oxidation-resistant refractories but are still suffering due to their extreme brittleness.

Materials consisting of both elements, carbon and silicon, are considered as most promising candidates for future structural high temperature materials.

Keywords

Carbon Fibre Silicon Carbide Flexural Strength Liquid Silicon Organosilicon Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Fitzer, Carbon 25, 163–190 (1987).CrossRefGoogle Scholar
  2. 2.
    E. Fitzer, Proc. Seminar and Workshop on Carbon Fibres and their Applications, Delhi (1986).Google Scholar
  3. 3.
    E. Fitzer, Carbon 16, 1–16 (1978).CrossRefGoogle Scholar
  4. 4.
    I. Sewdas, Ph.D. Thesis, University of Karlsruhe, 1970.Google Scholar
  5. 5.
    K. Reinmuth, Ph.D. Thesis, University of Karlsruhe, 1968.Google Scholar
  6. 6.
    E. Fitzer, 2. Plansee-Seminar, p. 56. Springer-Verlag, Wien (1956).Google Scholar
  7. 7.
    E. Fitzer, in Passivierende Filme und Deckschichten, p. 43. Springer-Verlag, Berlin/Gottingen/Heidelberg (1956).Google Scholar
  8. 8.
    E. Fitzer and K. Reinmuth, 6. Plansee-Seminar (1968).Google Scholar
  9. 9.
    J. Schlichting, Special Ceramics 6, p. 161. The British Ceramic Res. Association, Stoke-on-Trent (1975).Google Scholar
  10. 10.
    J. Schlichting, Revue int. des hautes temp, et des réfractaires 16, 67 (1979).Google Scholar
  11. 11.
    H. Herbst, Ph.D. thesis, University of Karlsruhe, 1974.Google Scholar
  12. 12.
    E. Fitzer, H. Herbst and J. Schlichting, SCI. 4th Intern. Conf. Car. Graphite, paper 122 (Session IX). London, 23-27 Sept. (1974).Google Scholar
  13. 13.
    M. Bonnke, Ph.D. Thesis, University of Karlsruhe, 1965.Google Scholar
  14. 14.
    M. Bonnke and E. Fitzer, Berichte der Deutschen Keramischen Gesellschaft 43, 180 (1966).Google Scholar
  15. 15.
    E. Fitzer, CIT 41, 331 (1969).Google Scholar
  16. 16.
    L. Aggour, Ph.D. Thesis, University of Karlsruhe, 1968.Google Scholar
  17. 17.
    M. Sahebkar, Ph.D. Thesis, University of Karlsruhe, 1973.Google Scholar
  18. 18.
    L. Aggour, E. Fitzer, E. Ignatowitz and M. Sahebkar, Carbon 12, 350 (1974).CrossRefGoogle Scholar
  19. 19.
    E. Ignatowitz, Ph.D. Thesis, University of Karlsruhe, 1973.Google Scholar
  20. 20.
    L. Aggour, E. Fitzer, M. Heym and E. Ignatowitz, Preprints Int. Conf. on Metallg. Coatings, April 5-8 (1976): Thin Solid Films 40, 97 (1977).Google Scholar
  21. 21.
    E. Fitzer, W. Fritz and D. Kehr, VDI-Z 114, 1221 (1972).Google Scholar
  22. 22.
    D. Kehr, Ph.D. Thesis, University of Karlsruhe, 1975.Google Scholar
  23. 23.
    E. Fitzer, D. Kehr and M. Sahebkar, CIT 45, 1244 (1973).Google Scholar
  24. 24.
    E. Fitzer and D. Hegen, “Gas Phase Precipitation of SiC and Si3N4—Contribution of Chemistry to the Development of Modern Silicon Ceramics,” Angew. Chem. 91, 316–325 (1979).CrossRefGoogle Scholar
  25. 25.
    E. Fitzer and J. Schlichting, “Inorganic Fibers,” Z. Werkstofftechnik, 11, 330–341 (1980).CrossRefGoogle Scholar
  26. 26.
    H.J. Buhler, Ph.D. Thesis, University of Karlsruhe, 1976.Google Scholar
  27. 27.
    W.B. Hillig et al. , “Silicon/Silicon Carbide Composites,” GEC Techn. Inform. Ser., 74RD282 (1974).Google Scholar
  28. 28.
    R. Gadow, Ph.D. Thesis, University of Karlsruhe, 1986.Google Scholar
  29. 29.
    E. Fitzer and R. Gadow, “Investigations of the Reactivity of Different Carbons with Liquid Silicon,” Proc. Infl Symp. Ceramic Components for Engines, Edited by S. Somiya, pp. 561-572 (1983).Google Scholar
  30. 30.
    E. Fitzer, W. Fritz and R. Gadow, “Possibilities for Fibre Reinforcement of Silicon Carbide,” Lecture Meeting Tokyo Inst. Tech. 12-14.10.83 in Advances of Ceramics; Edited by S. Somiya, KTK Scientific, Tokyo, 1985.Google Scholar
  31. 31.
    K. Brennfleck, E. Fitzer and G. Schoch, “CVD of SiC on Carbon Fibres,” Proc. 19th Int. Carbon Conf., pp. 162-163 (1984).Google Scholar
  32. 32.
    G. Fritz et al. , “Thermal Decomposition of Si(CH3)4 and Si(C2H5)4.” Z. Anorg. Allg. Chem., 286, p. 149 (1956).CrossRefGoogle Scholar
  33. 33.
    E. Larsson and L. Bjellerup, “The Reaction of Diphenyldichlorosilane with Ammonia and Amines,” J. Am. Chem. Soc., 75, 995–997 (1953).CrossRefGoogle Scholar
  34. 34.
    S. Yajima, U.S. Pat 4,052,430 (1977).Google Scholar
  35. 35.
    S. Yajima, “Development of Ceramics, especially SiC Fibres, from Organosilicon Polymers by Heat Treatment,” Phil. Trans. Refr. Soc. London, A 294, pp. 419–426 (1980).CrossRefGoogle Scholar
  36. 36.
    R. West et al. , “Polysilastyrene: Phenylmethylsilane-Dimethylsilane Copolymers as Precursors to Silicon Carbide,” Am. Ceram. Soc. Bull., 62 [8] 899–903 (1983).Google Scholar
  37. 37.
    S. Yajima, “Special Heat-Resting Materials From Organometallic Polymers,” ibid., 893-98 (1983).Google Scholar
  38. 38.
    R.W. Rice, “Ceramics from Polymer Pyrolysis, Opportunities and Needs,” ibid., 889-892 (1983).Google Scholar
  39. 39.
    R.R. Wills, R.A. Markle and S.P. Mukherjee, “Siloxanes, Silanes and Silazanes in the Preparation of Ceramics and Glasses,” ibid., 904-911 (1983).Google Scholar
  40. 40.
    C.L. Schilling, J.P. Wesson, and T.C. Williams, “Polycarbosilane Precursors for Silicon Carbide,” ibid., 912-915 (1983).Google Scholar
  41. 41.
    D. Seyferth et al. , “A Liquid Silazane Precursor to Silicon Nitride,” Comm. Am. Ceram. Soc., C-13, Jan. 1983.Google Scholar
  42. 42.
    K.S. Mazdiyasni, “Powder Synthesis from Metal-Organic Precursors,” Ceramics In?I, 8(2) 42–56 (1982).CrossRefGoogle Scholar
  43. 43.
    J. Tanaka, “Development of SiC Fiber Applications,” Chem. Econ. Eng. Rev., pp. 1-6, Sept. 1980.Google Scholar
  44. 44.
    S. Yajima et al. , “Synthesis of Continuous SiC Fibres with High Tensile Strength,” J. Am. Ceram. Soc., 59(7-8) 324–337 (1976).CrossRefGoogle Scholar
  45. 45.
    K.S. Mazdiyasni, R. West, and L.D. David, “Characterization of Organosilicon- Infiltrated Porous Reaction-Sintered Si3N4,” J. Am. Ceram. Soc., 61(11-12) 504–508 (1978).CrossRefGoogle Scholar
  46. 46.
    K.S. Mazdiyasni, U.S. Pat. 4,177,230. Dec. 1979.Google Scholar
  47. 47.
    H. Strohmeier, Comparative Study of Gas- and Liquid-Phase Impregnation of Porous Si3N4 and SiC materials; Thesis, Fak. Chemie d. Universitat Karlsruhe, 1981.Google Scholar
  48. 48.
    E. Fitzer, et al. , “Impregnation Method for Preparation and Consolidation of Reaction-bonded Silicon Ceramics,” AFAST-Kolloquium Ceramiques Techniques, Lyon, March 1983.Google Scholar
  49. 49.
    B.E. Walker et al. , “Preparation and Properties of Monolithic and Composite Ceramics Produced by Polymer Pyrolysis,” Am. Ceram. Soc. Bull., 62(8) 916–923 (1983).Google Scholar
  50. 50.
    E. Fitzer and M. Keuthen, Proceedings VIII Yugoslav-German meeting on materials science and development (1987), Yu. 1.87 Edition Bilateral Seminar of the Internat. Bureau, Kernforschungsanlage Jülich GmbH, D-5170 Jülich, FRG.Google Scholar
  51. 51.
    P. Godard, B. Delmon and J.P. Mercier, “Impregnation and Polymerization of Vinylic Monomers in Porous Media,” J. Appl. Polym. Sci., 18, 1477–1491 (1974).CrossRefGoogle Scholar
  52. 52.
    R. Naslain et al. , “The Carbon Fibre-Carbon and Silicon Carbide Binary Matrix Composites, a New Class of Materials for High Temperature Applications,” Adv. in Comp. Mat., 2, 1084–1094, Paris (1980).Google Scholar
  53. 53.
    S.E.P., Société Européenne de Propulsion, AFAST Symp., 14-17.3.83 Lyon (1983).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • E. Fitzer
    • 1
  1. 1.Institut für Chemische TechnikUniversität KarlsruheKarlsruheGermany

Personalised recommendations