Advertisement

Malignant Lymphoma of Mucosa Associated Lymphoid Tissue (Malt)

  • P. G. Isaacson
  • J. Spencer
Part of the Immunology and Medicine Series book series (IMME, volume 15)

Abstract

The majority of extranodal non-Hodgkin’s lymphomas occur in the gastrointestinal tract and other mucosal organs where the tumours arise from mucosa associated lymphoid tissue (MALT). This lymphoid tissue may be a normal tissue component as in the mucosa of the intestine and bronchi, or acquired, usually as the result of an ‘autoimmune’ disorder as in the stomach, salivary glands and thyroid. In either case, the organization and histological features of the lymphoid tissue are distinctive and differ from that of peripheral lymph nodes. As a consequence, the clinicopathological features of the lymphomas derived from MALT are equally distinctive, differing from the much more common nodal lymphomas1. At present, studies of MALT derived lymphomas have principally been confined to those of B-cell origin. These appear to account for the great majority of this group of lymphomas. It is conceivable that an equally distinctive group of T-cell lymphomas arises from MALT, and the recent characterization of coeliac associated lymphoma as a T-cell neoplasm2 suggests that this is indeed the case. The clinicopathological features of MALT derived lymphomas can only be fully comprehended in relation to the histology and physiologic behaviour of MALT. Thus the cells of these lymphomas share the homing patterns of MALT lymphocytes and this may account for the slow evolution of the lymphomas and their tendency to remain localized. Certain specific and diagnostically useful histological features common to these lymphomas can also be explained in relation to their origin from MALT.

Keywords

Mucosa Associate Lymphoid Tissue Gastric Lymphoma Mucosa Associate Lymphoid Tissue Lymphoma Mantle Zone Thyroid Lymphoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Isaacson, P. and Wright, D. H. (1984). Extranodal malignant lymphoma arising from mucosa-associated lymphoid tissue. Cancer, 53, 2515–24PubMedCrossRefGoogle Scholar
  2. 2.
    Isaacson, P. G., O’Connor, N. T. J., Spencer, J., Bevan, D. H., Connolly, C. E., Kirkham, N., Pollock, D. J., Wainscoat, J. S., Stein, H. and Mason, D. Y. (1985). Malignant histiocytosis of the intestine–a T cell lymphoma. Lancet, 2, 688–91PubMedCrossRefGoogle Scholar
  3. 3.
    Cornes, J. S. (1965). Number size and distribution of Peyer’s patches in the human small intestine. Part 1. The development of Peyer’s patches. Gut, 6, 225–9PubMedCrossRefGoogle Scholar
  4. 4.
    Spencer, J., MacDonald, T. T., Finn, T. and Isaacson, P. G. (1986). The development of gut-associated lymphoid tissue in the terminal ileum of fetal human intestine. Clin. Exp. Immunol., 64, 536–43PubMedGoogle Scholar
  5. 5.
    Owen, R. L. and Jones, A. L. (1974). Epithelial cell specialisation within human Peyer’s patches: an ultrastructural study of intestinal lymphoid follicles. Gastroeenterology, 66, 189–203Google Scholar
  6. 6.
    Owen, R. L. (1977). Sequential uptake of horseradish peroxidase by lymphoid follicle epithelium of Peyer’s patches in the normal unobstructed mouse intestine: an ultrastructural study. Gastroenterology, 72, 440–51PubMedGoogle Scholar
  7. 7.
    Bockman, D. E., Boydston, W. R. and Beezhold, D. H. (1983). The role of epithelial cells in gut-associated immune reactivity. In McGhee, J. R. and Mestecky, J. (eds) The Secretory Immune System. vol. 409, pp. 129–144. ( New York: New York Academy of Sciences )Google Scholar
  8. 8.
    Richman, L. K., Graeff, A. S. and Strober, W. (1981). Antigen presentation by macrophage-enriched cells from mouse Peyer’s patch. Cell. Immunol., 62, 110–18PubMedCrossRefGoogle Scholar
  9. 9.
    MacDonald, T. T. and Carter, P. B. (1982). Isolation and functional characterisation of adherent phagocytic cells from mouse Peyer’s patches. Immunology, 45, 769–74PubMedGoogle Scholar
  10. 10.
    Griscelli, G., Vasalli, P. and McCluskey, R. T. (1969). The distribution of large dividing lymph node cells in syngeneic recipient rats after intravenous injection. J. Exp. Med., 130, 1427–51PubMedCrossRefGoogle Scholar
  11. 11.
    Hall, J. G., Parry, D. M. and Smith, M. E. (1972). The distribution and differentiation of lymph-borne immunoblasts after intravenous injection into syngeneic recipients. Cell Tiss. Kin., 5, 269–81Google Scholar
  12. 12.
    Crabbe, P. A., Baxin, H., Eyssen, H. and Heremans, J. F. (1968). The normal microbial flora as a major stimulus for proliferation of plasma cells synthesising IgA in the gut. Int. Arch. Allergy Appl. Immunol., 34, 362–75PubMedCrossRefGoogle Scholar
  13. 13.
    Nash, D. R., Vaerman, J. P., Bazin, H. and Heremans, J. F. (1969). Identification of IgA in rat serum and secretions. J. Immunol., 103, 145–8PubMedGoogle Scholar
  14. 14.
    South, M. A., Cooper, M. D., Wollheim, F. A., Hong, R. and Good, R. A. (1966). The IgA system. I. studies on the transport and immunocytochemistry of IgA in the saliva. J. Exp. Med., 123, 615–27PubMedCrossRefGoogle Scholar
  15. 15.
    Porter, P., Noakes, D. E. and Allen, W. D. (1972). Intestinal secretions in pre-ruminant calf. Immunology, 23, 299–312PubMedGoogle Scholar
  16. 16.
    Orlans, E., Peppard, J. V., Reynolds, J. and Hall, J. G. (1978). Rapid active transport of immunoglobulin A from blood to bile. J. Exp. Med., 147, 588–92PubMedCrossRefGoogle Scholar
  17. 17.
    Walker, W. A. and Isselbacher, K. J. (1977). Intestinal antibodies. N. Engl. J. Med., 297, 767–73PubMedCrossRefGoogle Scholar
  18. 18.
    Vaerman, J. P., Andre, C., Bazin, H. and Heremans, J. F. (1973). Mesenteric lymph as a major Source of serum IgA in guinea pigs and rats. Eur. J. Immunol., 3, 580–4PubMedCrossRefGoogle Scholar
  19. 19.
    Bienenstock, J., McDermott, M., Befus, D. and O’Neill, M. (1978). A common mucosal immunologic system involving bronchus breast and bowel. Adv. Exp. Med. Biol., 107, 53–9PubMedGoogle Scholar
  20. 20.
    Montgomery, P. C., Ayyildiz, A., Lemaitre-Coelho, I. M., Vaerman, J-P. and Rockey, J. H. (1983). Induction and expression antibodies in secretions: The occular immune system. In McGhee, J. R. and Mestecky, J. (eds). The Secretory Immune System, vol. 409, pp. 428–440. ( New York: New York Academy of Sciences )Google Scholar
  21. 21.
    Spencer, J. and Hall, J. G. (1984). Studies on the lymphocytes of sheep. IV Migration patterns of lung-associated lymphocytes efferent from the caudal mediastinal lymph node. Immunology, 52, 1–5PubMedGoogle Scholar
  22. 22.
    Vaerman, J. P. and Heremans, J. F. (1966). Subclasses of human IgA based on differences in the alpha polypeptide chains. Science, 153, 647–9PubMedCrossRefGoogle Scholar
  23. 23.
    Andre, C., Andre, F. and Fargier, M. C. (1978) Distribution of IgA, and IgA2 plasma cells in various normal human tissues and in the jejunum of plasma IgA-deficient patients. Clin. Exp. Immunol., 33, 327–31PubMedGoogle Scholar
  24. 24.
    Crago, S. S., Kutteh, N. H., Moro, I., Allansmith, M. R., Radl, J., Haaijman, J. J. and Mestecky, J. (1984). Distribution of IgA1-, IgA2- and J chain-containing cells in human tissue. J. ImmunoL, 132, 16–18Google Scholar
  25. 25.
    Tourville, D. R., Adler, R. H., Bienenstock, J. and Tomasi, T. B. (1969). The human secretory immunoglobulin system: immunohistochemical localisation of aA, secretory ‘piece’ and lactoferrin in normal human tissues. J. Exp. Med., 129, 411–29PubMedCrossRefGoogle Scholar
  26. 26.
    Spencer, J., Finn, T., Pulford, K. A. F., Mason, D. Y. and Isaacson, P. G. (1985). The human gut contains a novel population of B lymphocytes which resemble marginal zone cells. Clin. Exp. Immunol., 62, 607–12PubMedGoogle Scholar
  27. 27.
    Spencer, J., Finn, T. and Isaacson, P. G. (1986). Human Peyer’s patches–an immunohistochemical study. Gut, 27, 405–10PubMedCrossRefGoogle Scholar
  28. 28.
    Spencer, J., Finn, T. and Isaacson, P. G. (1986). A comparative study of the gut-associated lymphoid tissue in primates and rodents. Virch. Arch., 51, 509–19CrossRefGoogle Scholar
  29. 29.
    Spencer, J., Finn, T. and Isaacson, P. G. (1985). Gut-associated lymphoid tissue: a morphological and immunocytochemical study of the human appendix. Gut, 26, 672–9PubMedCrossRefGoogle Scholar
  30. 30.
    Fergusson, A. (1977). Progress report. Intraepithelial lymphocytes of the small intestine. Gut, 18, 921–37CrossRefGoogle Scholar
  31. 31.
    Pulford, K. A. F., Ralfkiaer, E., MacDonald, S. N., Erber, W. N., Falini, B., Gatter, K. C. and Mason, D. Y. A. (1986). A new monoclonal antibody (KB61) recognising an antigen of 40,000 molecular weight which is selectively expressed on a subpopulation of human lymphocytes. Immunology, 57, 71–6PubMedGoogle Scholar
  32. 32.
    Rowe, M., Hildreth, J. E. K., Rickinson, A. B. and Epstein, M. A. (1982). Monoclonal antibodies to Epstein-Barr virus-induced, transformation-associated cell surface antigens: binding patterns and effect upon virus-specific T-cell cytotoxicity. Int. J. Cancer, 29, 373–80PubMedCrossRefGoogle Scholar
  33. 33.
    Sminia, T. and Plesch, B. E. C. (1982). An immunohistochemical study of cells with surface and cytoplasmic immunoglobulins in situ in Peyer’s patches and lamina propria of rat small intestine. Virch. Arch., 40, 181–9CrossRefGoogle Scholar
  34. 34.
    Herbert, A., Wright, D. H., Isaacson, P. G. and Smith, J. L. (1984). Primary malignant lymphoma of the lung: Histopathologic and immunologic evaluation of nine cases. Hum. Pathol., 15, 415–22PubMedCrossRefGoogle Scholar
  35. 35.
    Anscombe, A. M. and Wright, D. H. (1985). Primary malignant lymphoma of the thyroid–a tumour of mucosa-associated lymphoid tissue: review of seventy-six cases. Histopathology, 9, 81–97PubMedCrossRefGoogle Scholar
  36. 36.
    Ree, H. J., Rege, V. B., Knisley, R. E., Thayer, W. R., D’amico, R. P., Song, J. Y. and Crowley, J. P. (1980). Malignant lymphoma of Waldeyer’s ring following gastrointestinal lymphoma. Cancer, 46, 1528–35PubMedCrossRefGoogle Scholar
  37. 37.
    Isaacson, P. G., Spencer, Jo. and Finn, T. (1986). Primary B-cell gastric lymphoma. Hum. PathoL, 17, 72–82PubMedCrossRefGoogle Scholar
  38. 38.
    World Health Organisation. (1976). Alpha-chain disease and related small intestinal lymphoma: A memorandum. Bull. WHO, 54, 615–24Google Scholar
  39. 39.
    Isaacson, P. (1979). Middle East lymphoma and a-chain disease. An immunohistochemical study. Am. J. Surg. PathoL, 3, 431–41PubMedCrossRefGoogle Scholar
  40. 40.
    Asselah, F., Slavin, G., Sowter, G. and Assehah, H. (1983). Immunoproliferative small intestinal disease in Algerians. 1. Light microscopic and immuno-chemical studies. Cancer, 52, 227–37PubMedCrossRefGoogle Scholar
  41. 41.
    Isaacson, P. G. and Price, S. K. (1985). Light chains in Mediterranean lymphoma. J. Clin. Pathol., 38, 601–7PubMedCrossRefGoogle Scholar
  42. 42.
    Al-Bahrani, Z. R., Al-Mondhiry, H., Bakir, F. and Al-Saleem, T. (1983). Clinical and pathological subtypes of primary intestinal lymphoma. Experience with 132 patients over a 14 year period. Cancer, 52, 1666–72PubMedCrossRefGoogle Scholar
  43. 43.
    Banerjee, D. and Ahmad, D. (1982). Malignant lymphoma complicating lymphocytic interstitial pneumonia: A monoclonal B-cell neoplasm arising in a polyclonal lymphoproliferative disorder. Hum. Pathol., 13 (8), 780–4PubMedCrossRefGoogle Scholar
  44. 44.
    Schmid, U., Helbron, D. and Lennert, K. (1982). Development of malignant lymphoma in myeopithelial sialadenitis (Sjörgren’s syndrome). Virch. Arch. (Pathol. Anat.), 395, 11–43CrossRefGoogle Scholar
  45. 45.
    Wilkin, T. J. and Casey, C. (1984). The distribution of immunoglobulin-containing cells in human autoimmune thyroiditis. Acta Endocrinol., 106, 490–8PubMedGoogle Scholar
  46. 46.
    Wright, D. H. (1985). Histogenesis of Burkitt’s lymphoma: a B-cell tumour of mucosa-associated lymphoid tissue. pp. 37–45. Presented at the WHO Symposium on Burkitt’s Lymphoma: A Human Cancer Model. December 26–29, LyonGoogle Scholar
  47. 47.
    Cornes, J. S. (1961). Multiple lymphomatous polyposis of the gastrointestinal tract. Cancer, 14, 249–57PubMedCrossRefGoogle Scholar
  48. 48.
    Isaacson, P. G., Maclennan, K. A. and Subbuswamy, S. G. (1984). Multiple lymphomatous polyposis of the gastrointestinal tract. Histopathology, 8, 641–56PubMedCrossRefGoogle Scholar
  49. 49.
    Stein, H., Gerdes, J. and Mason, D. Y. (1982). The normal and malignant germinal centre. Clin. Haematol, 11, 531–59PubMedGoogle Scholar
  50. 50.
    Salter, D. M., Krajewski, A. S. and Dewar, A. E. (1986). Immunophenotype analysis of malignant histiocytosis of the intestine. J. Clin. Pathol, 39, 8–15PubMedCrossRefGoogle Scholar
  51. 51.
    Loughran, T. P., Kadin, M. E. and Deek, H. J. (1986). T-cell intestinal lymphoma associated with celiac sprue. Ann. of Int. Med., 104, 44–7Google Scholar
  52. 52.
    Isaacson, P. and Wright, D. H. (1978). Malignant histiocytosis of the intestine: its relationship to malabsorption and ulcerative jejunitis. Hum. Pathol. 9, 661–77PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • P. G. Isaacson
  • J. Spencer

There are no affiliations available

Personalised recommendations