The pharmacokinetics of azapropazone

  • J. C. McElnay
  • F. S. Walker


The subject of pharmacology can conveniently be divided into two subsections, namely pharmacodynamics and pharmacokinetics. While pharmacodynamics deals with the therapeutic effects (both desirable and undesirable), i.e. what the drug does to the organism, pharmacokinetics deals with the kinetics of the processes of absorption, distribution and elimination of the drug, i.e. how the organism treats the drug. A careful study of the pharmacokinetic profile of a drug is desirable since the magnitude of both the desired therapeutic response and toxicity are often closely related to the concentration of the drug at its site(s) of action. This latter concentration can often be correlated with serum concentrations of the drug and it is via careful evaluation of serum drug concentrations, post administration, that the preliminary pharmacokinetic profile of a drug can be established.


Human Serum Albumin Synovial Fluid Peak Plasma Concentration Plasma Protein Binding Free Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Walker, FS (1985). Azapropazone and related benzotriazones. In: Rainsford, KD, (ed) Anti-inflamatory and Anti-rheumatic Drugs, Vol. II, Newer Anti-inflamatory Drugs. (Boca Raton: CRC Press) pp. 1–32Google Scholar
  2. 2.
    Mixich, G (1968). Zum chemischen Verhalten des Antiphogistikums Azapropazon (Mi85) = 3-Dimethylamino-7-methyl-1,2-(n-propylmalonyl)-1,2-dihydro-1.2.4-benzotriazin. Helv. Chim. Acta, 51, 532CrossRefGoogle Scholar
  3. 3.
    Fenner, H and Mixich, G (1973) NMR-Untersuchungen zur Molekülstruktur von Azapropazon und Deutung seiner Pharmakokinetic und Biotransformation. Azneim. Forsch., 23, 667Google Scholar
  4. 4.
    Albengres, E, Urien, S, Riant, P, Marcel, GA and Tillement, JP (1987). Binding of two anthranilic acid derivatives to human albumin, erythrocytes and lipoproteins: evidence for glafenic acid high affinity binding. Mol. Pharmacol, 31, 294–300PubMedGoogle Scholar
  5. 5.
    Klatt, VL and Koss, FW (1973). Pharmkokinetische Untersuchungen mit 14C-Azapropazon-Dihydrat an der Ratte. Arzneim. Forsch., 23, 913Google Scholar
  6. 6.
    Jahn, V, Relier, J and Schatz, F (1973). Pharmakokinetische Untersuchungen mit Azapropazon bei Tieren. Arzneim. Forsch., 23, 660–666Google Scholar
  7. 7.
    Jones, CJ (1976). The pharmacology and pharmacokinetics of azapropazone — a review. Curr. Med. Res. Opin., 4, 3–16PubMedCrossRefGoogle Scholar
  8. 8.
    Sturman, JA and Smith, MJH (1967). The binding of salicylate to plasma proteins in different species. J. Pharm. Pharmacol., 19, 621–623PubMedCrossRefGoogle Scholar
  9. 9.
    Schatz, F, Adrian, RW, Mixich, G, Molnarova, M, Relier, J and Jahn, U (1970). Pharmakokinetische Untersuchungen mid dem Antiphlogistikum Azapropazon (Prolixan 300) am Menschen. Therapiewoche, 20, 39Google Scholar
  10. 10.
    Klatt, VL and Koss, FW (1973). Human pharmakokinetische Untersuchungen mit 14C-Azapropazon-Dihydrat. Arzneim. Forsch., 23, 920–921Google Scholar
  11. 11.
    Evans, EF (1974). Data on file, AH Robins Co.Google Scholar
  12. 12.
    Leach, H (1976). The determination of azapropazone in blood plasma. Curr. Med. Res. Opin., 4, 35PubMedCrossRefGoogle Scholar
  13. 13.
    Breuing, K-H, Gilfrich, H-J, Meinertz, T, Weigand, V-W and Jähnchen, E (1981). Disposition of Azapropazone in chronic renal and hepatic failure. Eur. J. Clin. Pharmacol, 20, 147–155PubMedCrossRefGoogle Scholar
  14. 14.
    Rainsford, KD (1985). Distribution of azapropazone and its principal 8-hydroxy metabolite in plasma, urine and the gastrointestinal mucosa determined by HPLC. J. Pharm. Pharmacol, 37, 341–345.PubMedCrossRefGoogle Scholar
  15. 15.
    Kline, BJ, Wood, JH and Beightol, LA (1983). The determination of azapropazone and its 6-hydroxy metabolite in plasma and urine by HPLC. Arzneim. Forsche., 33, 504–506Google Scholar
  16. 16.
    Jähnchen, E, Blanck, KJ, Breuing, K-H, Gilfrich, H-J, Meinertz, T and Trenk, D (1981). Plasma protein binding of azapropazone in patients with kidney and liver disease. Br. J. Clin. Pharmacol, 11, 361–367PubMedGoogle Scholar
  17. 17.
    Urien, S, Albengres, E, Pinquier, JL and Tillement, JP (1986). Role of alpha-1 acid glycoprotein, albumin and non-esterified fatty acids in serum binding of apazone and warfarin. Clin. Pharmacol. Ther., 39, 683–689PubMedCrossRefGoogle Scholar
  18. 18.
    Ritch, AES, Perera, WNR and Jones, CJ (1982). Pharmakokinetics of azapropazone in the elderly. Br. J. Clin. Pharmacol, 14, 116–119PubMedGoogle Scholar
  19. 19.
    Aylward, M, Baker, PA, Davies, DE, Hutchings, L, Lewis, PA, Maddock, J and Protheroe, DA (1977). Data on file, AH Robins Co. (Simbec Research Laboratories, Merthyr Tydfil, Wales, UK)Google Scholar
  20. 20.
    Spahn, H, Thabe, K, Mutschler, E, Tillmann, K and Gikalov, I (1987). Concentration of azapropazone in synovial tissues and fluid. Eur. J. Clin. Pharmacol, 32, 303–307PubMedCrossRefGoogle Scholar
  21. 21.
    Powell-Jackson, PR (1977). Interaction between azapropazone and warfarin. Br. Med. J., 1, 1193–1194PubMedCrossRefGoogle Scholar
  22. 22.
    McElnay, JC and D’Arcy, PF (1980). Displacement of albumin-bound warfarin by anti-inflammatory agents in vitro. J. Pharm. Pharmacol, 32, 709–711PubMedCrossRefGoogle Scholar
  23. 23.
    Diana, FJ, Veronich, K and Kapoor, AL (1989). Binding of nonsteroidal antiinflammatory agents and their effect on binding of racemic warfarin and its enantiomers to human serum albumin. J. Pharm. Sci., 78, 195–199PubMedCrossRefGoogle Scholar
  24. 24.
    Lewis, RJ, Trager, WF, Chan, KK, Breckenridge, A, Orme, M, Roland, M and Schary, W (1974). Warfarin; stereochemical aspects of its metabolism and the interaction with phenylbutzone. J. Clin. Invest., 53, 1607–1617PubMedCrossRefGoogle Scholar
  25. 25.
    Roberts, CJC, Daneschmend, TK, Macfarlane, D and Dieppe, PA (1981). Anticonvulsant intoxication precipitated by azapropazone. Postgrad. Med. J., 57, 191–192PubMedCrossRefGoogle Scholar
  26. 26.
    Geaney, DP, Carver, JG, Davis, CL and Aronson, JK (183). Pharmacokinetic investigation of the interaction of azapropazone with phenytoin. Br. J. Clin. Pharmcol., 15, 727–734Google Scholar
  27. 27.
    Andreasen, PB, Simonsen, K, Brocks, K, Dimo, B and Bouchelouche, P (1981). Hypoglycaemia induced by azapropazone-tölbutamide interaction. Br. J. Clin. Pharmacol, 12, 581–583PubMedGoogle Scholar
  28. 28.
    Waller, DG and Waller, D (1984). Hypoglycaemia due to azapropazone-tolbutamide interaction. Br. J. Rheumatol, 23, 24–25PubMedCrossRefGoogle Scholar
  29. 29.
    Daly, H, Boyle, J, Roberts, C and Scott, G (1986). Interaction between methotrexate and non-steroidal anti-inflammatory drugs. Lancet, 1, 557.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • J. C. McElnay
  • F. S. Walker

There are no affiliations available

Personalised recommendations