Advertisement

Ice Sheets and Sea Level Change as a Response to Climatic Change at the Astronomical Time Scale

  • A. Berger
  • TH. Fichefet
  • H. Gallee
  • I. Marsiat
  • CH. Tricot
  • J. P. van Ypersele
Part of the NATO ASI Series book series (ASIC, volume 325)

Abstract

Understanding how and why global climate is changing is investigated at the astronomical time scale related to the glacial-interglacial cycles of the Quaternary Ice Age.

A 2-dimensional physical model taking into account the coupling between the atmosphere, the upper ocean, the sea-ice, the ice-sheets and the continental surfaces has been forced by the long-term variations of the insolation induced by the astronomical changes in the elements of the Earth’s orbit. The low frequency part of the ice volume and sea-level changes have been correctly reproduced in agreement with the deep sea and ice cores records and with the climatic reconstructions made from multiple geological observations. However, after 6 kyr BP, the remaining ice volume of the Greenland and northern American ice sheets is overestimated in the simulation, probably because of the absence of an interactive carbon cycle providing a time-dependent atmospheric CO2 concentration.

Extrapolation has been made for the next 100,000 years assuming no human interference at this time scale: the next ice age is expected to occur before 60,000 years AP, the cooling rate between now and then being roughly 0.01 °C per century. The maximum amount of ice to be expected in the northern hemisphere is 27*106 km3 representing a 70 m sea-level drop in 55,000 years, i.e. slightly more than 12 cm per century in average.

Keywords

Astronomical Theory Milankovitch Theory Astronomical Time Scale Monthly Insolation Orbital Parameter Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, B.G. (1981) “Late Weichselian ice sheets in Eurasia and Greenland.”, in Denton, G.H. and Hughes, T.J. (Eds.) The Last Great Ice Sheets, Wiley-interscience Publ., USA, pp. 1 – 65Google Scholar
  2. Barnola, J.M., Raynaud, D., Korotkevich, Y.S. & Lorius, C. (1987) “Vostok ice core provides 160,000-year record of atmospheric CO2”, Nature239 (6138), pp. 408 – 414CrossRefGoogle Scholar
  3. Barron, E. J., & Washington, W.M. (1984) “The role of geographic variables in explaining paleoclimates: Results from Cretaceous climate model sensitivity studies.”, J. Geophys. Res., 89, pp. 1267 – 1279CrossRefGoogle Scholar
  4. Berger, A. (1976) “Long-term variations of daily and monthly insolation during the last Ice Age.”, EOS, 57 (4), p. 254Google Scholar
  5. Berger, A. (1977) “Support for the astronomical theory of climatic change.”, Nature268, pp. 44 – 45CrossRefGoogle Scholar
  6. Berger, A. (1978 a) “Long term variations of daily insolation and Quaternary climatic changes.”, J. Atmos. Sci., 35(12), pp. 2362–2367CrossRefGoogle Scholar
  7. Berger, A. (1978 b) “Long-term variations of caloric insolation resulting from the Earth’s orbital elements.”, Quat. Res., 9, pp. 139–167CrossRefGoogle Scholar
  8. Berger, A. (1979) “Insolation signatures of Quaternary climatic changes.”, II Nuovo Cimento, 2C (1), pp. 63 – 87Google Scholar
  9. Berger, A. (1984) “Accuracy and frequencies stability of the Earth’s orbital elements during the Quaternary.”, in Berger, A.L., Imbrie, J., Hays, J., Kukla, G and Saltzman, B. (Eds.) Milankovitch and Climate, Part I, Reidel Publ. Company, Dordrecht, Holland, pp. 3 – 40Google Scholar
  10. Berger, A. (1988) “Milankovitch theory and climate.”, Review of Geophysics, 26 (4), pp. 624 – 657CrossRefGoogle Scholar
  11. Berger, A. (1989) “Pleistocene climatic variability at astronomical frequencies.”, Quaternary International, 2, pp. 1 – 14CrossRefGoogle Scholar
  12. Berger, A., Imbrie, J., Hays, J., Kukla, G. and Saltzman, B. (eds.)(1984) Milankovitch and Climate., Reidel Publ. Company, Dordrecht, Holland, 895 p.Google Scholar
  13. Berger, A., & Loutre, M.F. (1988) New insolation values for the climate of the last 10 million years., Sc. Report 1988/13, Institut d’ Astronomie et de Géophysique G. Lemaître, Université Catholique de Louvain, Louvain-la-NeuveGoogle Scholar
  14. Berger, A., Gallée, H., Fichefet, Th, Marsiat, I., & Tricot, Ch. (1989 a) Testing the astronomical theory with a coupled climate-ice sheet model. Global and Planetary Change (in press)Google Scholar
  15. Berger, A., Fichefet, Th., Gallée, H., Marsiat, I., Tricot C., & van Ypersele J.P. (1989b) “Physical interactions within a coupled climate model over the last glacial-interglacial cycle.”, Philosophical Transactions of the Royal Society of Edinburgh, Earth SciencesGoogle Scholar
  16. Berger, A., Fichefet, Th., Gallée, H., Tricot, Ch., Marsiat, I., & van Ypersele, J.P. (1989c) “Astronomical forcing of the last glacial-interglacial cycle.”, in Crutzen, P.,Gérard, J.C1., and Zander, R. (eds.) Our Changing Atmosphere, Université de Liège, Institut d’Astrophysique, Cointe-Ougrée, pp. 353 – 382Google Scholar
  17. Berger, A., Gallée, H., & Mélice, J.L. (1990) “The Earth’s future climate at the astronomical time scale.”, in Goodess, Cl. and Palutikof, J. (eds.) Future Climate Change and Radioactive waste Disposal, University of East Anglia, Norwich (in press)Google Scholar
  18. Boulton, G.S., Smith, G.D., Jones, A.S & Newsome, J. (1985) “Glacial geology and glaciology of the last mid-latitude ice sheets.”, J. Geol. Soc. London, 142, pp. 447 – 474CrossRefGoogle Scholar
  19. Broecker, W.S. (1982) “Glacial to interglacial changes in ocean chemistry.”, Prog. Oceanog., 11, pp. 151 – 197CrossRefGoogle Scholar
  20. Chappell, J. & Shackleton, N.J. (1986) “Oxygen isotopes and sea level.”, Nature324, pp. 137 – 140CrossRefGoogle Scholar
  21. CLIMAP Project Members (1976) “The surface of the Ice-Age Earth.”, Science, 191, pp. 1131 – 1136CrossRefGoogle Scholar
  22. CLIMAP Project Members (1981) “Seasonal reconstructions of the earth’s surface at the last glacial maximum.”, Geol. Soc. Am. Map Chart Ser. MC-36Google Scholar
  23. Dyke, A.S. & Prest, V.K. (1987) “Late Wisconsinan and Holocene history of the Laurentide ice sheet.”, Géographie Physique et Quaternaire, 41 (2), pp. 237–263Google Scholar
  24. Fichefet Th., & Gaspar Ph. (1988) “A model study of upper ocean-sea ice interactions.”, J. Phys. Oceanogr., 18, pp. 181 – 195CrossRefGoogle Scholar
  25. Fichefet, Th., Tricot, Ch., Berger, A., Gallée, H., & Marsiat, I. (1989) “Climate studies with a coupled atmosphere-upper ocean-ice sheets model.”, Philosophical Transactions of the Royal Society of London, A239, pp. 249 – 261Google Scholar
  26. Fischer, D.A., Reeh, N., & Langley, K. (1985) “Objective reconstructions of the late Wisconsinan Laurentide Ice Sheet and the significance of deformable beds.”, Géographie Physique et Quaternaire, 39 (3), pp. 229 – 238Google Scholar
  27. Gallée, H. (1989) Conséquences pour la prochaine glaciation de la disparition éventuelle de la calotte glaciaire recouvrant le Groenland., Recherche faite sous contrat CEA/BC-4561, France, Sc. Report 1989/7, Institut d’Astronomie et de Géophysique G. Lemaître, Université Catholique de Louvain, Louvain-la-NeuveGoogle Scholar
  28. Gallée, H., van Ypersele, J.P., Fichefet, Th., Marsiat, I., Tricot, Ch., & Berger, A. ( 1989 a) Simulation of the Last Glacial Cycle by a Coupled 2-D Climate-Ice Sheet Model, Part (1): The climate model, Scientific Report 1989/1, Institut d’Astronomie et de Géophysique G. Lemaîre, Université Catholique de Louvain, Louvain-la-NeuveGoogle Scholar
  29. Gallée, H., van Ypersele, J.P., Fichefet, Th., Marsiat, I., Tricot, Ch., & Berger, A. ( 1989 b) Simulation of the Last Glacial Cycle by a Coupled 2-D Climate-Ice sheet model, Part 2: “Response to insolation and CO2 variations”, Scientific Report 1989/3, Institut d’Astronomie et de Géophysique G. Lemaîre, Université Catholique de Louvain-la-NeuveGoogle Scholar
  30. Gates, W.L . (1976 a) “Modelling the Ice Age climate”, Science, 191, pp. 1138–1144CrossRefGoogle Scholar
  31. Gates, W.L . (1976 b) “The numerical simulation of Ice-Age climate with a global general circulation model.”, J. Atmos. Sci., 33, pp. 1844–1873CrossRefGoogle Scholar
  32. Genthon, C., Barnola, J.M., Raynaud, D., Lorius, D., Jouzel, J., Barkov, N.I. & Korotkevitch, Y.S. (1987) “Vostok ice core: climatic response to CO2 and orbital forcing changes over the last climatic cycle.”, Nature239 (6138), pp. 414 – 418CrossRefGoogle Scholar
  33. Hays, J.D., Imbrie, J., & Shackleton, N.J. (1976) “Variations in the Earth’s orbit: Pacemaker of the Ice Ages.”, Science, 194, pp. 1121 – 1132CrossRefGoogle Scholar
  34. Hecht, A. (1985) “Paleoclimatology. A retrospective of the past 20 years.”, in Hecht, A. (ed.) Paleoclimate Analysis and Modelling, Wiley, New York, pp. 1 – 26Google Scholar
  35. Hughes, T.J., Denton, G.H., Anderson, B.G, Schiling, D.H., Fasthook, J.L. & Lingle, C.S. (1981) “The last great ice sheets: a global view.”, in Denton, G.H. and Hughes, T.J. (eds.) The last great ice sheets., Wiley Interscience Publ., USA, pp. 275 – 317Google Scholar
  36. Imbrie, J., Hays, J., Martinson, D.G., McIntyre, A., Mix, A.C., Morley, J.J., Pisias, N.G., Prell, W.L., & Shackleton, N.J. (1984) “Theorbital theory of Pleistocene climate: support from a revised Chronology of the marine δ18O record.”, in Berger, A.L., Imbrie, J.,Hays, J., Kukla, G., and Saltzman, B. (eds.) Milankovitch and Climate., Reidel Publ. Company, Dordrecht, Holland, pp. 269 – 305Google Scholar
  37. Jones, M.D.H., & Henderson-Sellers, A. (1990) “History of the greenhouse effect.”, Progress in Physical Geography, 14 (1), pp. 1 – 18CrossRefGoogle Scholar
  38. Kukla, G. (1978) “Recent changes in snow and ice.”, in Gribbin, J. (ed.) Climatic Change, Cambridge University Press, pp. 114 – 129Google Scholar
  39. Kutzbach, J.E. (1981) “Monsoon climate of the early Holocene: Climatic experiment using the earth’s orbital parameters for 9,000 years ago.”, Science, 214, pp. 59 – 61CrossRefGoogle Scholar
  40. Kutzbach, J.E. (1985) “Modelling of paleoclimates.”, Advances in Geophysics, 28A, pp. 159 – 196CrossRefGoogle Scholar
  41. Kutzbach, J.E., & Guetter, P.J. (1984 a) “Sensitivity of late-glacial and Holocene climates to the combined effects of orbital parameter changes and lower boundary condition changes: ‘Snapshot’ simulations with a general circulation model for 18,9, and 6 kyr BP.”, Ann. Glaciol., 5, pp. 85–87Google Scholar
  42. Kutzbach, J.E., & Guetter, P.J. ( 1984 b) “The sensitivity of monsoon climates to orbital parameter changes for 9000 years BP: Experiments with the NCAR general circulation model.”, in Berger, A., Imbrie, J., Hays, J.,Kukla, G. and Saltzman, B. (eds.) Milankovitch and Climate, Part 2, Reidel Publ., Dordrecht, Netherlands, pp. 801 – 820Google Scholar
  43. Kutzbach, J.E., & Guetter, P.J. (1986) “The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18 000 years.”, J. Atmos. Sci., 43, pp. 1726 – 1759CrossRefGoogle Scholar
  44. Kutzbach, J.E., & Otto-Bliesner, B.L. (1982) “The sensitivity of the African-Asian monsoonal climate to orbital parameter changes for 9000 years B.P. in a low-resolution general circulation model.”, J. Atmos. Sci., 39, pp. 1177 – 1188CrossRefGoogle Scholar
  45. Kutzbach, J.E., & Street-Perrott, F.A. (1985) “Milankovitch forcing of fluctuations in the level of tropical lakes from 18 to 0 kyr BP.”, Nature317, pp. 130 – 134CrossRefGoogle Scholar
  46. Kutzbach, J.E., & Gallimore, R.G. (1988) “Sensitivity of a coupled atmosphere-/mixed layer ocean model to changes in orbital forcing at 9000 years BP.”, J. Geophys. Res., D1, pp. 803 – 821CrossRefGoogle Scholar
  47. Labeyrie, L.D., Duplessy, J.CI., & Blanc, P.L. (1987) “Variations in mode of formation and temperature of oceanic deep waters over the past 125,000 years.”, Nature 327, pp. 477 – 482CrossRefGoogle Scholar
  48. Lorius, CL, Jouzel, J., Ritz, C., Merlivat, L., Barkov, N.I., Kofogkevich, Y.S., & Kotlyakov, V.M. (1985) “A 150,000-year climatic record from Antarctic ice.”, Nature316, pp. 591 – 596CrossRefGoogle Scholar
  49. Lorius, CL, Barkov, N.I., Jouzel, J., Korotkevitch, Y.S., Kotlyakov, V.M., & Raynaud, D. (1988) “Antarctic ice core: C02 and climatic change over the last climatic cycle.”, EOS, 69 No. 26, pp. 681, 683 – 684Google Scholar
  50. Manabe, S., & Hahn, D.G. (1977) “Simulation of the tropical climate of an Ice Age.”, J. Geophys. Res., 82, pp. 3889 – 3911CrossRefGoogle Scholar
  51. Manabe, S., & Broccoli, A.J. (1985) “A comparison of climate model sensitivity with data from the last glacial maximum.”, J. Atmos. Sci., 42 No. 23, pp. 2643 – 2651CrossRefGoogle Scholar
  52. Mangerud, J. (1987) “The last glacial history of Scandinavia between the last interglacial and the last glacial maximum.”, in Frenzel, B. (ed.) The beginning of an inland glaciation—facts and problems of climate dynamics., Proceedings Mainz SymposiumGoogle Scholar
  53. Marsiat, I., & Berger, A. (1989) “On the relationship between ice volume and sea level over the last glacial cycle.”, Climate Dynamics, 4 (2), pp. 81 – 84Google Scholar
  54. Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C. & Shackleton, N.J. (1987) “Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy.”, Quat. Res., 27 (1), pp. 1 – 29CrossRefGoogle Scholar
  55. Milankovitch, M. (1941) Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem. Royal Serbian Sciences, Spec. pub. 132, section of Mathematical and Natural Sciences, Vol.33, Belgrade, 633 pp. (‘Canon of Insolation and the Ice Age Problem.’,English Translation by Israel Program for Scientific Translation and published for the U.S. Department of Commerce and the National Science Foundation, Washington D.C., 1969 )Google Scholar
  56. Neftel, A., Oeschger, H., Schwander, J., Stauffer, B., & Zumbrunn, R. (1982) “Icecore sample measurements give atmospheric CO2 content during the past 40,000 yr.”, Nature295, pp. 220 – 223CrossRefGoogle Scholar
  57. North, G.R., Mengel, J.G. & Short, D.A. (1983) “Simple energy balance model resolving the seasons and the continents, application to the astronomical theory of the Ice Ages.”, J. Geophys. Res., 88 (C11), pp. 6576 – 6586CrossRefGoogle Scholar
  58. Oerlemans, J. (1989) “A projection of future sea level.”, Climatic Change, 15 (1/2), pp. 151 – 174CrossRefGoogle Scholar
  59. Pirazzoli, P.A. (1989) “Present and near future global sea level changes.”, Global and Planetary Change, 1 (4), pp. 241 – 258CrossRefGoogle Scholar
  60. Prell, W.L., & Kutzbach, J.E. (1987) “Monsoon variability over the past 150,000 years.”, J. Geophys. Res., 92, pp. 8411 – 8425CrossRefGoogle Scholar
  61. Raval, A., & Ramanathan, V. (1989) “Observational determination of the greenhouse effect.”, Nature343, pp. 758 – 761CrossRefGoogle Scholar
  62. Rind, D., Peteet, D., & Kukla, G. (1989) “Can Milankovitch orbital variations initiate the growth of ice sheets in a general circulation model?”, Journal of Geophysical Research, 94, D10, pp. 12. 851 – 12. 871Google Scholar
  63. Royer, J.F., Deque, M., & Pestiaux, P. (1983) “Orbital forcing of the inception of the Laurentide ice sheet.”, Nature304, pp. 43 – 46CrossRefGoogle Scholar
  64. Ruddiman, W.F., & Raymo, M.E. (1988) “Northern Hemisphere climates regimes during the last 3 Myr: possible tectonic forcing.”, Phil. Trans. Roy. Soc. Lond., B318, pp. 411 – 430Google Scholar
  65. Saltzman, B. (1987) “Carbon dioxide and the δ18O record of late-quaternary climatic change: a global model.”, Climate Dynamics, 1, pp. 77 – 85CrossRefGoogle Scholar
  66. Shackleton, N.J. & Opdyke, N.D. (1973) “Oxygen isotope and paleomagnetic stratigraphy of Equatorial Pacific core V28-238: oxygen isotope temperatures and ice volumes on a 105 years and 106 years scale.”, Quat. Res., 3 (1), pp. 39 – 55CrossRefGoogle Scholar
  67. Suarez, M.J., & Held, I.M. (1979) “The sensitivity of an energy balance climate model to variations in the orbital parameters.”, J. Geophys. Res., 84 (C8), pp. 4825 – 4836CrossRefGoogle Scholar
  68. Tricot, Ch. (1989) “The transient response of climate to greenhouse gas concentration changes: a preliminary study with a two-dimensional coupled atmosphere-ocean model.”, in Crutzen, P, Gérard, J. CI., and Zander, R. (eds.) Our Changing Atmosphere, Universite de Liege, Institut d’Astrophysique, Cointe-Ougrée, pp. 333 – 338Google Scholar
  69. Tricot, Ch., Gallée, H., Fichefet, Th., Marsiat, I., & Berger, A. (1989) “A simulation of the long-term variations of the global ice volume over the past 122,000 years: a test of the astronomical theory.”, in Lenoble, J. and Geleyn, J.F. (eds.) IRS’88: Current Problems in Atmospheric Radiation, A. Deepak Publishing, pp. 338 – 341Google Scholar
  70. van der Veen, C.J. (1988) “Projecting future sea level.”, Surveys in Geophysics, 9, pp. 389 – 418CrossRefGoogle Scholar
  71. Warrick, R.A., Barrow, E.M., & Wigley, T.M.L. (1989) The greenhouse effect and its implications for the European Communities., Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, UKGoogle Scholar
  72. Webb, T., Street-Perrott, F.A. & Kutzbach, J.E. (1987) “Late-Quaternary paleoclimatic data and climate models.”, Episodes, 10, pp. 4–6Google Scholar
  73. Wigley, T.M.L. (1976) “Spectral analysis and astronomical theory of climatic change.”, Nature264, pp. 629 – 631CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • A. Berger
    • 1
  • TH. Fichefet
    • 1
  • H. Gallee
    • 1
  • I. Marsiat
    • 1
  • CH. Tricot
    • 1
  • J. P. van Ypersele
    • 1
  1. 1.Institut d’Astronomie et de Géophysique G. LemaîtreUniversité Catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations