Advertisement

Effective bounds for semipositive sheaves and for the height of points on curves over complex function fields

  • Hélène Esnault
  • Eckart Viehweg

Abstract

In this note we prove an effective version of the positivity theorems for certain direct image sheaves for fibre spaces over curves and apply it to obtain bounds for the height of points on curves of genus g ≥ 2 over complex function fields. Similar positivity theorems over higher dimensional basis and their applications to moduli spaces [13] were presented by the second author at the conference on algebraic geometry, Humboldt Universität zu Berlin, 1988.

Keywords

General Fibre Effective Divisor Fibre Space Surjective Morphism Projective Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Esnault and E. Viehweg, Dyson’s lemma for polynomials in several variables (and the theorem of Roth). Invent. Math. 78 (1984) 445–490.CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    H. Esnault and E. Viehweg, Logarithmic De Rham complexes and vanishing theorems. Invent. Math. 86 (1986) 161–194.CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    T. Fujita, On Kähler fibre spaces over curves. J. Math. Soc. Japan 30 (1978) 779–794.CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    H. Grauert, Mordell’s Vermutung über rationale Punkte auf algebraischen Kurven und Funktionenkörper. Publ. Math. IHES 25 (1965) 131–149.MathSciNetGoogle Scholar
  5. 5.
    Y. Kawamata, A generalization of Kodaira-Ramanujam’s vanishing theorem. Math. Ann. 261 (1982) 57–71.CrossRefMathSciNetGoogle Scholar
  6. 6.
    Yu. I. Manin, Rational points on an algebraic curve over function fields. Trans. Amer. Math. Soc. 50 (1966) 189–234.Google Scholar
  7. 7.
    S. Mori, Classification of higher-dimensional varieties. Algebraic Geometry. Bowdoin 1985. Proc. of Symp. in Pure Math. 46 (1987) 269–331.Google Scholar
  8. 8.
    A.N. Parshin, Algebraic curves over function fields I. Math. USSR Izv. 2 (1968) 1145–1170.CrossRefzbMATHGoogle Scholar
  9. 9.
    L. Szpiro, Séminaire sur les pinceaux de courbes de genre au moins deux. Astérisque 86 (1981).Google Scholar
  10. 10.
    E. Viehweg, Vanishing theorems. J. Reine Angew. Math. 335 (1982) 1–8.CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    E. Viehweg, Weak positivity and the additivity of the Kodaira dimension for certain fibre spaces. Adv. Stud. Pure Math. 1 (1983) 329–353 North-Holland.MathSciNetGoogle Scholar
  12. 12.
    E. Viehweg, Vanishing theorems and positivity in algebraic fibre spaces. Proc. Intern. Congr. Math., Berkeley 1986, 682–687.Google Scholar
  13. 13.
    E. Viehweg, Weak positivity and the stability of certain Hilbert points. Invent. Math. 96 (1989) 639–667.CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    P. Vojta, Mordell’s conjecture over function fields. Preprint 1988.Google Scholar
  15. 15.
    A.N. Parshin, Algebraic curves over function fields. Soviet Math. Dokl. 9 (1968) 1419–1422.zbMATHGoogle Scholar

Copyright information

© Kluwer Academic Publishers. Printed in the Netherlands 1990

Authors and Affiliations

  • Hélène Esnault
    • 1
  • Eckart Viehweg
    • 2
  1. 1.Max-Planck-Institut für MathematikBonn 3Germany
  2. 2.FB6, MathematikUniversität-GH-EssenEssen 1Germany

Personalised recommendations