Skip to main content

From Laplace to Supernova SN 1987A: Bayesian Inference in Astrophysics

  • Chapter
Maximum Entropy and Bayesian Methods

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 39))

Abstract

The Bayesian approach to probability theory is presented as an alternative to the currently used long-run relative frequency approach, which does not offer clear, compelling criteria for the design of statistical methods. Bayesian probability theory offers unique and demonstrably optimal solutions to well-posed statistical problems, and is historically the original approach to statistics. The reasons for earlier rejection of Bayesian methods are discussed, and it is noted that the work of Cox, Jaynes, and others answers earlier objections, giving Bayesian inference a firm logical and mathematical foundation as the correct mathematical language for quantifying uncertainty. The Bayesian approaches to parameter estimation and model comparison are outlined and illustrated by application to a simple problem based on the gaussian distribution. As further illustrations of the Bayesian paradigm, Bayesian solutions to two interesting astrophysical problems are outlined: the measurement of weak signals in a strong background, and the analysis of the neutrinos detected from supernova SN 1987A. A brief bibliography of astrophysically interesting applications of Bayesian inference is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abies, J.G. (1974) ‘Maximum Entropy Spectral Analysis’, Astron. Astrophys. Supp. 15, 383.

    Google Scholar 

  • Bayes, T. (1763) ‘An Essay Towards Solving a Problem in the Doctrine of Chances’, Phil. Trans. Roy. Soc. London 53, 370. Reprinted in Biometrika 45, 293, and in Press (1989).

    Article  Google Scholar 

  • Berger, J.O. (1984) ‘The Robust Bayesian Viewpoint’, in J.B. Kadane (ed.), Robustness of Bayesian Analyses, Elsevier Science Publishers, B.V., p. 63.

    Google Scholar 

  • Berger, J.O. (1985) Statistical Decision Theory and Bayesian Analysis, Springer-Verlag, New York.

    MATH  Google Scholar 

  • Berger, J.O., and D. A. Berry (1988) ‘Statistical Analysis and the Illusion of Objectivity’, Amer. Scientist 76, 159.

    Google Scholar 

  • Berger, J.O., and R. Wolpert (1984) The Likelihood Principle, Institute of Mathematical Statistics, Hayward, CA.

    Google Scholar 

  • Bernardo, J.M. (1979) ‘Reference Posterior Distributions for Bayesian Inference’, J. Roy. Stat. Soc. B41, 113.

    MathSciNet  Google Scholar 

  • Bernardo, J.M. (1980) ‘A Bayesian Analysis of Hypothesis Testing’, in J.M. Bernardo, M.H. DeGroot, D.V. Lindley, and A.F.M. Smith (eds.), Bayesian Statistics, University Press, Valencia, Spain, p. 605.

    Google Scholar 

  • Bevington, P.R. (1969) Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill Book Company, New York.

    Google Scholar 

  • Birnbaum, A. (1962) J. Amer. Statist. Assoc.‘On the Foundations of Statistical Inference’, 57, 269; and following discussion.

    Article  MathSciNet  MATH  Google Scholar 

  • Box, G.E.P., and G.C. Tiao (1973) Bayesian Inference in Statistical Analysis, Addison-Wesley Publishing Co., Reading, MA.

    MATH  Google Scholar 

  • Bretthorst, G.L. (1988a) ‘Excerpts from Bayesian Spectrum Analysis and Parameter Estimation’, in G.J. Erickson and C.R. Smith (eds.), Maximum-Entropy and Bayesian Methods in Science and Engineering, Vol. 1, Kluwer Academic Publishers, Dordrecht, p. 75.

    Google Scholar 

  • Bretthorst, G.L. (1988b) Bayesian Spectrum Analysis and Parameter Estimation, Springer-Verlag, New York.

    MATH  Google Scholar 

  • Bretthorst, G.L. (1989a) ‘Bayesian Model Selection: Examples Relevant to NMR’, in J. Skilling (ed.), Maximum-Entropy and Bayesian Methods, Kluwer Academic Publishers, Dordrecht, p. 377.

    Google Scholar 

  • Bretthorst, G.L. (1989b) ‘Bayesian Analysis I: Parameter Estimation Using Quadrature NMR Models’, J. Magn. Reson., in press.

    Google Scholar 

  • Bretthorst, G.L. (1989c) ‘Bayesian Analysis II: Signal Detection and Model Selection’, J. Magn. Reson., in press.

    Google Scholar 

  • Bretthorst, G.L. (1989d) ‘Bayesian Analysis III: Applications to NMR Signal Detection, Model Selection and Parameter Estimation’, J. Magn. Reson., in press.

    Google Scholar 

  • Bretthorst, G.L. (1990) ‘An Introduction to Parameter Estimation Using Bayesian Probability Theory’, these proceedings.

    Google Scholar 

  • Bretthorst, G.L., and C.R. Smith (1989) ‘Bayesian Analysis of Signals from Closely-Spaced Objects’, in R.L. Caswell (ed.), Infrared Systems and Components III, Proc. SPIE 1050.

    Google Scholar 

  • Burrows, C., and J. Koornneef (1989) ‘The Application of Maximum Entropy Techniques to Chopped Astronomical Infrared Data’, in J. Skilling (ed.), Maximum-Entropy and Bayesian Methods, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Cherry, M.L., E.L. Chupp, P.P. Dunphy, D.J. Forrest, and J.M. Ryan (1980) ‘Statistical Evaluation of Gamma-Ray Line Observations’, Ap. J. 242, 1257.

    Article  Google Scholar 

  • Cox, R.T. (1946) ‘Probability, Frequency, and Reasonable Expectation’, Am. J. Phys. 14, 1.

    Article  MATH  Google Scholar 

  • Cox, R.T. (1961) The Algebra of Probable Inference, Johns Hopkins Press, Baltimore.

    MATH  Google Scholar 

  • Dawid, A.P. (1980) ‘A Bayesian Look at Nuisance Parameters’, in J.M. Bernardo, M.H. DeGroot, D.V. Lindley, and A.F.M. Smith (eds.), Bayesian Statistics, University Press, Valencia, Spain, p. 167.

    Google Scholar 

  • Eadie, W.T., D. Drijard, F.E. James, M. Roos, and B. Sadoulet (1971) Statistical Methods in Experimental Physics, North-Holland Publishing Company, Amsterdam.

    MATH  Google Scholar 

  • Edwards, W., H. Lindman, and L.J. Savage (1963) ‘Bayesian Statistical Inference for Phychological Research’, Psych. Rev. 70, 193; reprinted in J.B. Kadane (ed.), Robustness of Bayesian Analyses, Elsevier Science Publishers, B.V., p. 1.

    Article  Google Scholar 

  • Efron, B. (1975) ‘Biased Versus Unbiased Estimation’, Adv. Math. 16, 259.

    Article  MathSciNet  MATH  Google Scholar 

  • Erickson, G.J., P.O. Neudorfer, and C.R. Smith (1989) ‘From Chirp to Chip, A Beginning’, in J. Skilling (ed.), Maximum-Entropy and Bayesian Methods, Kluwer Academic Publishers, Dordrect, p. 505.

    Google Scholar 

  • Feigelson, E.D. (1989) ‘Statistics in Astronomy’, in S. Kotz and N.L. Johnson (eds.), Encyclopedia of Statistical Science, Vol. 9, in press.

    Google Scholar 

  • Fougere, P.F. (1988) ‘Maximum Entropy Calculations on a Discrete Probability Space’, in G.J. Erickson and C.R. Smith (eds.), Maximum-Entropy and Bayesian Methods in Science and Engineering, Vol. 1, Kluwer Academic Publishers, Dordrecht, p. 205.

    Google Scholar 

  • Fougere, P.F. (1989) ‘Maximum Entropy Calculations on a Discrete Probability Space: Predictions Confirmed’, in J. Skilling (ed.), Maximum-Entropy and Bayesian Methods, Kluwer Academic Publishers, Dordrect, p. 303.

    Google Scholar 

  • Frieden, B.R. (1972) ‘Restoring with Maximum Likelihood and Maximum Entropy’, J. Opt. Soc. Am. 62, 511.

    Article  Google Scholar 

  • Frieden, B.R. (1972) ‘Image Enhancement and Restoration’, in T.S. Huang (ed.), Picture Processing and Digital Filtering, Springer-Verlag, New York, p. 177.

    Google Scholar 

  • Frieden, B.R., and D.C. Wells (1978) ‘Restoring with Maximum Entropy. III. Poisson Sources and Backgrounds’, J. Opt Soc. Am. 68, 93.

    Article  Google Scholar 

  • Good, I.J. (1980) ‘The Contributions of Jeffreys to Bayesian Statistics’, in A. Zellner (ed.), Bayesian Analysis in Econometrics and Statistics, North-Holland, Amsterdam, p. 21.

    Google Scholar 

  • Grandy, W.T. (1987) Foundations of Statistical Mechanics Vol. 1: Equilibrium Theory, D. Reidel Publishing Company, Dordrecht.

    MATH  Google Scholar 

  • Gull, S.F. (1988) ‘Bayesian Inductive Inference and Maximum Entropy’, in G.J. Erickson and C.R. Smith (eds.), Maximum-Entropy and Bayesian Methods in Science and Engineering, Vol. 1, Kluwer Academic Publishers, Dordrecht, p. 53.

    Google Scholar 

  • Gull, S.F. (1989) ‘Developments in Maximum Entropy Data Analysis’, in J. Skilling (ed.), Maximum-Entropy and Bayesian Methods, Kluwer Academic Publishers, Dordrecht, p. 53.

    Google Scholar 

  • Gull, S.F., and G.J. Daniell (1978) ‘Image Reconstruction from Incomplete and Noisy Data’, Nature 272, 686.

    Article  Google Scholar 

  • Hearn, D. (1969) ‘Consistent Analysis of Gamma-Ray Astronomy Experiments’, Nuc. Inst, and Meth. 70, 200.

    Article  Google Scholar 

  • Iverson, G.R. (1984)Bayesian Statistical Inference, Sage Publications, Beverly Hills, California.

    Google Scholar 

  • Jaynes, E.T. (1957a) ‘Information Theory and Statistical Mechanics’, Phys. Rev. 106, 620.*

    Article  MathSciNet  Google Scholar 

  • Jaynes, E.T. (1957b) ‘How Does the Brain Do Plausible Reasoning?’, Stanford Univ. Microwave Laboratory Report No. 421, reprinted in G.J. Erickson and C.R. Smith (eds.), Maximum-Entropy and Bayesian Methods in Science and Engineering, Vol. 1 (1988), Kluwer Academic Publishers, Dordrect, p. 1.

    Google Scholar 

  • Jaynes, E.T. (1958) Probability Theory in Science and Engineering, Colloquium Lectures in Pure and Applied Science No. 4, Socony Mobil Oil Co. Field Research Laboratory, Dallas.

    Google Scholar 

  • Jaynes, E.T. (1963) ‘New Engineering Applications of Information Theory’, in J.L. Bogdanoff and F. Kozin (eds.), Proc. of the 1st Symp. on Engineering Applications of Random Function Theory and Probability, John Wiley and Sons, Inc., New York, p. 163.

    Google Scholar 

  • Jaynes, E.T. (1968) ‘Prior Probabilities’, IEEE Trans. SSC-4, 227.*

    Google Scholar 

  • Jaynes, E.T. (1973) ‘The Well-Posed Problem’, Found, of Phys. 3, 477.*

    Article  MathSciNet  Google Scholar 

  • Jaynes, E.T. (1976) ‘Confidence Intervals vs. Bayesian Intervals’, in W.L. Harper and C.A. Hooker (eds.), Foundations of Probability Theory, Statistical Inference, and Statistical Theories of Science, D. Reidel Pub. Co., Dordrecht, p. 252.*

    Google Scholar 

  • Jaynes, E.T. (1978) ‘Where Do We Stand on Maximum Entropy’, in R.D. Levine and M. Tribus (eds.), The Maximum Entropy Formalism, MIT Press, Cambridge, p. 15.*

    Google Scholar 

  • Jaynes, E.T. (1980a) ‘Margin aliz at ion and Prior Probabilities’, in A. Zellner (ed.), Bayesian Analysis in Econometrics and Statistics, North-Holland, Amsterdam, p. 43.*

    Google Scholar 

  • Jaynes, E.T. (1980b) ‘Review of Inference, Method, and Decision (R.D. Rosenkrantz)’, J. Am. Stat. Assoc. 74, 740.

    Article  Google Scholar 

  • Jaynes, E.T. (1982) ‘On the Rationale of Maximum Entropy Methods’, Proc. IEEE 70, 939.

    Article  Google Scholar 

  • Jaynes, E.T. (1983) Papers on Probability, Statistics, and Statistical Physics (ed. R.D. Rosenkrantz), D. Reidel Pub. Co., Dordrecht.

    Google Scholar 

  • Jaynes, E.T. (1984a) ‘The Intuitive Inadequacy of Classical Statistics’, Epistemologia VII, 43.

    Google Scholar 

  • Jaynes, E.T. (1984b) ‘Prior Information and Ambiguity in Inverse Problems’, SIAM-AMS Proc. 14, 151.

    MathSciNet  Google Scholar 

  • Jaynes, E.T. (1985a) ‘Some Random Observations’, Synthese 63, 115.

    Article  MathSciNet  Google Scholar 

  • Jaynes, E.T. (1985b) ‘Where Do We Go From Here?’, in C.R. Smith and W.T. Grandy, Jr. (eds.), Maximum-Entropy and Bayesian Methods in Inverse Problems, D. Reidel Publishing Company, Dordrecht, p. 21.

    Google Scholar 

  • Jaynes, E.T. (1985c) ‘Highly Informative Priors’, in J.M. Bernardo, M.H. DeGroot, D.V. Lindley, and A.F.M. Smith (eds.), Bayesian Statistics 2, Elsevier Science Publishers, Amsterdam, p. 329.

    Google Scholar 

  • Jaynes, E.T. (1986a) ‘Bayesian Methods: General Background’, in J.H. Justice (ed.), Maximum-Entropy and Bayesian Methods in Applied Statistics, Cambridge University Press, Cambridge, p. 1.

    Chapter  Google Scholar 

  • Jaynes, E.T. (1986b) ‘Monkees, Kangaroos, and N’, in J.H. Justice (ed.), Maximum-Entropy and Bayesian Methods in Applied Statistics, Cambridge University Press, Cambridge, p. 26.

    Chapter  Google Scholar 

  • Jaynes, E.T. (1987) ‘Bayesian Spectrum and Chirp Analysis’, in C.R. Smith and G.J. Erickson (eds.), Maximum-Entropy and Bayesian Spectral Analysis and Estimation Problems, D. Reidel Publishing Company, Dordrecht, p. 1.

    Google Scholar 

  • Jaynes, E.T. (1988a) ‘The Relation of Bayesian and Maximum Entropy Methods’, in G.J. Erickson and C.R. Smith (eds.), Maximum-Entropy and Bayesian Methods in Science and Engineering, Vol.1, Kluwer Academic Publishers, Dordrecht, p. 25.

    Google Scholar 

  • Jaynes, E.T. (1988b) ‘Detection of Extra-Solar System Planets’, in G.J. Erickson and C.R. Smith (eds.), Maximum-Entropy and Bayesian Methods in Science and Engineering, Vol.1, Kluwer Academic Publishers, Dordrecht, p. 147.

    Google Scholar 

  • Jaynes, E.T. (1989a) ‘Clearing Up Mysteries — The Original Goal’, in J. Skilling (ed.), Maximum-Entropy and Bayesian Methods, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Jaynes, E.T. (1989b) ‘Probability in Quantum Theory’, in Proceedings of the Workshop on Complexity, Entropy, and the Physics of Information, in press.

    Google Scholar 

  • Jaynes, E.T. (1990a) ‘Probability Theory as Logic’, these proceedings.

    Google Scholar 

  • Jaynes, E.T. (1990b) Probability Theory — The Logic of Science, in preparation.

    Google Scholar 

  • Jeffreys, H. (1937) ‘On the Relation Between Direct and Inverse Methods in Statistics’, Proc. Roy. Soc. A160, 325.

    Google Scholar 

  • Jeffreys, H. (1939) Theory of Probability, Oxford University Press, Oxford (3d revised edition 1961).

    Google Scholar 

  • Kawai, N., E.E. Fenimore, J. Middleditch, R.G. Cruddace, G.G. Fritz, and W.A. Snyder (1988) ‘X-Ray Observations of the Galactic Center by Spartan 1’, Ap. J. 330, 130.

    Article  Google Scholar 

  • Kolb, E. W., A. J. Stebbins, and M. S. Turner (1987) ‘How Reliable are Neutrino Mass Measurements from SN 1987A?’, Phys. Rev. D35, 3598; D36, 3820.

    Google Scholar 

  • Lahav, O., and S.F. Gull (1989) ‘Distances to Clusters of Galaxies by Maximum Entropy Method’, M.N.R.A.S. 240, 753.

    Google Scholar 

  • Lampton, M., B. Margon, and S. Bowyer (1976) ‘Parameter Estimation in X-Ray Astronomy’, Ap. J. 208, 177.

    Article  Google Scholar 

  • Laplace, P.S. (1812) Theorie Analytique des Probabilités, Courcier, Paris.

    Google Scholar 

  • Laplace, P.S. (1951)Philosophical Essay on Probability, Dover Publications, New York (originally published as the introduction to Laplace [1812]).

    Google Scholar 

  • Lindley, D.V. (1958) ‘Fiducial Distributions and Bayes’ Theorem’, J. Roy. Stat. Soc. B20, 102.

    MathSciNet  Google Scholar 

  • Lindley, D.V. (1965) Introduction to Probability and Statistics from a Bayesian Viewpoint (2 Vols.), Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  • Lindley, D.V. (1972) Bayesian Statistics, A Review, Society for Industrial and Applied Mathematics, Philadelphia.

    Google Scholar 

  • Loredo, T.J. and D.Q. Lamb (1989) ‘Neutrinos from SN 1987A: Implications for Cooling of the Nascent Neutron Star and the Mass of the Electron Antineutrino’, in E. Fenyves (ed.), Proceedings of the Fourteenth Texas Symposium on Relativistic Astrophysics, An. N. Y. Acad. Sci. 571, 601.

    Google Scholar 

  • Loredo, T.J. and D.Q. Lamb (1990a) ‘Neutrinos from SN 1987A: Implications for Cooling of the Nascent Neutron Star’, submitted to Phys. Rev. D.

    Google Scholar 

  • Loredo, T.J. and D.Q. Lamb (1990b) ‘Neutrinos from SN 1987A: Implications for the Mass of the Electron Antineutrino’, submitted to Phys. Rev. D.

    Google Scholar 

  • Mardia, K.V. (1972) Statistics of Directional Data, Academic Press, London.

    MATH  Google Scholar 

  • Marsh, T.R., and K. Home (1989) ‘Maximum Entropy Tomography of Accretion Discs from their Emission Lines’, in J. Skilling (ed.), Maximum-Entropy and Bayesian Methods, Kluwer Academic Publishers, Dordrecht, p. 339.

    Google Scholar 

  • Martin, B.R. (1971) Statistics for Physicists, Academic Press, London.

    Google Scholar 

  • Mendenhall, W., R. L. Scheaffer, and D. D. Wackerly (1981) Mathematical Statistics with Applications, Duxbury Press, Boston.

    Google Scholar 

  • Narayan, R., and R. Nityanada (1986) ‘Maximum Entropy Image Restoration in Astronomy’, Ann. Rev. Astron. Astrophys., 24, 127.

    Article  Google Scholar 

  • Novick, M., and W. Hall (1965) ‘A Bayesian Indifference Procedure’, J. Am. Stat. Assoc. 60, 1104.

    Article  MathSciNet  MATH  Google Scholar 

  • O’Mongain, E. (1973) ‘Appplication of Statistics to Results in Gamma Ray Astronomy’, Nature 241, 376.

    Article  Google Scholar 

  • Press, S.J. (1989) Bayesian Statistics: Principles, Models, and Applications, John Wiley and Sons, New York.

    MATH  Google Scholar 

  • Press, W.H., B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling (1986) ‘Numerical Recipes’, Cambridge University Press, Cambridge.

    Google Scholar 

  • Renyi, A. (1972) Letters on Probability, Wayne State University Press, Detroit.

    Google Scholar 

  • Rosenkrantz, R.D. (1977) Inference, Method and Decision: Towards a Bayesian Philosophy of Science, D. Reidel Publishing Company, Dordrect.

    Google Scholar 

  • Runcorn, K. (1989) ‘Sir Harold Jeffreys (1891–1989)’, Nature 339, 102.

    Article  Google Scholar 

  • Shore, J.E., and R.W. Johnson (1980) ‘Axiomatic Derivation of the Principle of Maximum Entropy and the Principle of Minimum Cross-Entropy’, IEEE Trans. Inf. Th. IT-26, 26; erratum in IT-29, 942.

    Article  MathSciNet  Google Scholar 

  • Sibisi, S. (1990) ‘Quantified MAXENT: An NMR Application’, these proceedings.

    Google Scholar 

  • Skilling, J. (1986) ‘Theory of Maximum Entropy Image Reconstruction’, in J.H. Justice (ed.), Maximum Entropy and Bayesian Methods in Applied Statistics, Cambridge University Press, Cambridge, p. 156.

    Chapter  Google Scholar 

  • Skilling, J. (1989) ‘Classic Maximum Entropy’, in J. Skilling (ed.), Maximum-Entropy and Bayesian Methods, Kluwer Academic Publishers, Dordrecht, p. 45.

    Google Scholar 

  • Skilling, J. (1990) ‘Quantified Maximum Entropy’, these proceedings.

    Google Scholar 

  • Skilling, J. and S.F. Gull (1985) ‘Algorithms and Applications’, in C.R. Smith and W.T. Grandy, Jr. (eds.), Maximum-Entropy and Bayesian Methods in Inverse Problems, D. Reidel Publishing Company, Dordrecht, p. 83.

    Google Scholar 

  • Smith, C.R., and G. Erickson (1989) ‘From Rationality and Consistency to Bayesian Probability’, in J. Skilling (ed.), Maximum-Entropy and Bayesian Methods, Kluwer Academic Publishers, Dordrecht, p. 29.

    Google Scholar 

  • Smith, C.R., R. Inguva, and R.L. Morgan (1984) ‘Maximum-Entropy Inverses in Physics’, SIAM-AMS Proc. 14, 151.

    MathSciNet  Google Scholar 

  • Tribus, M. (1962) ‘The Use of the Maximum Entropy Estimate in the Estimation of Reliability’, in R.E. Machol and P. Gray (eds.), Recent Developments in Information and Decision Processes, The Macmillan Company, New York, p. 102.

    Google Scholar 

  • Tribus, M. (1969) Rational Descriptions, Decisions and Designs, Pergamon Press, New York.

    Google Scholar 

  • Van Campenhout, J.M., and T.M. Cover (1981) ‘Maximum Entropy and Conditional Probability’, IEEE Trans. on Info. Theory IT-27, 483.

    Article  Google Scholar 

  • van der Klis, M. (1989) ‘Fourier Techniques in X-Ray Timing’, in H. Ögelman and E.P.J van den Heuvel (eds.), Timing Neutron Stars, Kluwer Academic Publishers, Dordrect, p. 27.

    Google Scholar 

  • Zellner, A. (1977) ‘Maximal Data Informative Prior Distributions’, in A. Aykac and C. Brumat (eds.), New Developments in the Application of Bayesian Methods, North-Holland Publishing Co., Amsterdam, p. 211;

    Google Scholar 

  • A. Zellner (1984) Basic Issues in Econometrics, University of Chicago Press, Chicago, p. 201.

    Google Scholar 

  • Zellner, A. (1971) An Introduction to Bayesian Inference in Econometrics, J. Wiley and Sons, New York.

    MATH  Google Scholar 

  • Zellner, A. (1986) ‘Biased Predictors, Rationality, and the Evaluation of Forecasts’, Econ. Let 21, 45.

    Article  MathSciNet  Google Scholar 

  • Zellner, A. (1988) ‘A Bayesian Era’, in J.M. Bernardo, M.H. DeGroot, D.V. Lindley, and A.F.M. Smith (eds.), Bayesian Statistics 3, Oxford University Press, Oxford, p. 509.

    Google Scholar 

  • Zellner, A., and A. Siow (1980) ‘Posterior Odds Ratios for Selected Regression Hypotheses’, in J.M. Bernardo, M.H. DeGroot, D.V. Lindley, and A.F.M. Smith (eds.), Bayesian Statistics, University Press, Valencia, Spain, p. 585.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Loredo, T.J. (1990). From Laplace to Supernova SN 1987A: Bayesian Inference in Astrophysics. In: Fougère, P.F. (eds) Maximum Entropy and Bayesian Methods. Fundamental Theories of Physics, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0683-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0683-9_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6792-8

  • Online ISBN: 978-94-009-0683-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics