Skip to main content

Maxent Applied To Linear Regression

  • Chapter
  • 647 Accesses

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 39))

Abstract

Given sparse, unreplicated data of poor instrumental resolution, we determine the probability of linear models using orthogonal least squares regression and MAXENT with an ‘expert draftsman’ constraint. An information bound condition enables MAXENT inference for the reliability of evidence determining the probability distribution for observations of a constant.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.T. Jaynes, Phys. Rev., 108, 171 (1957).

    Article  MathSciNet  Google Scholar 

  2. E.T. Jaynes, IEEE Trans, Systems Sci. Cybernetics, SSC-4, 227 (1968), Found. Phys., 3, 477 (1973).

    Google Scholar 

  3. C. Villegas, Ann. Math. Stat., 43, 1767 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Nachbin, The Haar Integral (Van Nostrand, Princeton, 1965)

    Google Scholar 

  5. E.T. Jaynes, in W.L. Harper and C.A. Hooker, editors Foundations and Philosophy of Statistical Inference (Reidel, Dordrecht, Holland, 1976), 175–257.

    Google Scholar 

  6. J.F. Cyranski, Fitting Linear Models to Sparse, Unreplicated Data of Poor Resolution (submitted for publication).

    Google Scholar 

  7. J.F. Cyranski and N.S. Tzannes, Kybernetes, 12, 187 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  8. W.T Eadie, D. Drijard, F.E. James, M. Roos and B. Badoulet, Statistical Methods in Experimental Physics (North-Holland, Amsterdam, 1971).

    MATH  Google Scholar 

  9. J.F. Cyranski, in Maximum Entropy and Bayesian Methods in Applied Statistics, ed. J.H. Justice (Cambridge UP, Cambridge, 1986), 101.

    Chapter  Google Scholar 

  10. J.F. Cyranski, Inform. Contr., 41, 275 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  11. J.F. Cyranski, Found. Phys., 9, 641 (1979)

    Article  MathSciNet  Google Scholar 

  12. J.F. Cyranski, J. Math. Phys, 22, 1467 (1981).

    Article  MathSciNet  Google Scholar 

  13. J.F. Cyranski, J. Math. Phys., 23, 1074 (1982).

    Article  MathSciNet  Google Scholar 

  14. A. Papoulis, Probability Random Variables and Stochastic Processes (McGraw-Hill, New York, 1965).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Cyranski, J.F. (1990). Maxent Applied To Linear Regression. In: Fougère, P.F. (eds) Maximum Entropy and Bayesian Methods. Fundamental Theories of Physics, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0683-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0683-9_32

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6792-8

  • Online ISBN: 978-94-009-0683-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics