Skip to main content

Minimum Dissipation And Maximum Entropy

  • Chapter
Maximum Entropy and Bayesian Methods

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 39))

  • 654 Accesses

Abstract

It is argued that for several driven, dissipative, fluid flows, maximum entropy states are the same as minimum energy dissipation states. The demonstration requires a definition of entropy for continuous solenoidal fields that has previously been employed in ideal magnetohydrodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ambrosiano, J. and Vahala, G. (1981) Most-probable magnetohydrodynamic tokamak and reversed-field pinch equilibria, Phys. Fluids 24, 2253.

    Article  MATH  Google Scholar 

  • Batchelor, G.K. (1967) An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, U.K.

    MATH  Google Scholar 

  • de Groot, S.R. and Mazur, P. (1984) Non-Equilibrium Thermodynamics, Dover, New York.

    Google Scholar 

  • Finlayson, B.A. (1972) Existence of variational principles for Navier-Stokes equation, Phys. Fluids 15, 963.

    Article  MathSciNet  MATH  Google Scholar 

  • Jaynes, E.T. (1957) Information theory and statistical mechanics: I and II, Phys. Rev. 106, 620 and 108 171 (1957).

    Article  MathSciNet  Google Scholar 

  • Jaynes, E.T. (1979) “Where Do We Stand on Maximum Entropy?” in The Maximum Entropy Formalism, ed. by R.D. Levine and M. Tribus, (MIT Press, Cambridge, MA), pp. 15–118.

    Google Scholar 

  • Jaynes, E.T. (1980) The minimum entropy production principle, Ann. Rev. Phys. Chem. 31, 579.

    Article  Google Scholar 

  • Joyce, G. and Montgomery, D. (1973) Negative temperature states for the two-dimensional guiding-centre plasma, J. Plasma Phys. 10, 107.

    Article  Google Scholar 

  • Kraichnan, R.H. and Montgomery, D. (1980) Two-dimensional turbulence, Rep. Prog. Phys . 43, 547.

    Article  MathSciNet  Google Scholar 

  • Katz, A. (1967) Principles of Statistical Mechanics: The Information Theory Approach, Freeman, San Francisco.

    Google Scholar 

  • Keizer, J. (1987) Statistical Thermodynamics of Nonequilibrium Processes, Springer-Verlag, New York.

    Book  Google Scholar 

  • Lamb, H. (1945) Hydrodynamics, 6th ed., Dover, New York, pp. 617–619.

    Google Scholar 

  • Lanczos, C. (1970) The Variational Principles of Mechanics, 4th ed., Dover, New York.

    MATH  Google Scholar 

  • Landau, L.D. and Lifshitz, E.M. (1976) Mechanics, 3rd ed., Pergamon Press, Oxford, Chapters I and VII.

    Google Scholar 

  • Lundgren, T.S. and Pointin, Y.B. (1977) Non-Gaussian probability distributions for a vortex fluid, Phys. Fluids 20, 356.

    Article  MathSciNet  MATH  Google Scholar 

  • Montgomery, D., Turner, L. and Vahala, G. (1979) Most probable states in magnetohydrodynamics, J. Plasma Phys. 21, 239.

    Article  Google Scholar 

  • Montgomery, D. and Phillips, L. (1988) Minimum dissipation rates in magnetohydrodynamics, Phys. Rev. A38, 2953.

    Google Scholar 

  • Montgomery, D., Phillips, L. and Theobald, M.L. (1989) Helical, dissipative, magnetohydrodynamic states with flow, Phys. Rev. A40, 1515.

    Google Scholar 

  • Onsager, L. (1931) Reciprocal relations in irreversible processes: I and II, Phys. Rev. 37, 405 and 38, 2265.

    Article  MATH  Google Scholar 

  • Prigogine, I. (1947) Etude Thermodynamique des Phénomènes Irréversible, Dunod, Paris.

    Google Scholar 

  • Serrin, J. (1959) in Fluid Dynamics I, Vol. 8 of Handbuch der Physik, ed. by S. Flügge (Springer-Verlag, Berlin, 1959), Pt. 1, p. 125 ff.

    Google Scholar 

  • Taylor, J.B. (1974) Relaxation of toroidal plasmas and generation of reverse magnetic fields, Phys. Rev. Lett., 33, 1139.

    Article  Google Scholar 

  • Taylor, J.B. (1986) Relaxation and magnetic reconnection in plasmas, Revs. Mod. Phys. 58, 741.

    Article  Google Scholar 

  • ter Haar, D. (1966) Elements of Thermostatistics, 2nd ed., Holt, Rinehart and Winston, New York, 1966.

    Google Scholar 

  • Ting, A.C., Matthaeus, W.H. and Montgomery, D. (1986) Turbulent relaxation processes in magnetohydrodynamics, Phys. Fluids, 29, 3261.

    Article  Google Scholar 

  • Ting, A.C., Chen, H.H. and Lee, Y.C. (1987) Exact solutions of a nonlinear boundary value problem: the vortices of the two-dimensional sinh-Poisson equation, Physica 26D, 37.

    MathSciNet  Google Scholar 

  • Yourgrau, W. and Mandelstam, S. (1968) Variational Principles in Dynamics and Quantum Theory, 3rd ed., Saunders, Philadelphia.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Montgomery, D., Phillips, L. (1990). Minimum Dissipation And Maximum Entropy. In: Fougère, P.F. (eds) Maximum Entropy and Bayesian Methods. Fundamental Theories of Physics, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0683-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0683-9_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6792-8

  • Online ISBN: 978-94-009-0683-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics