Skip to main content

Review of Dispersive and Resonant Effects in Internal Wave Propagation

  • Chapter
The Physical Oceanography of Sea Straits

Part of the book series: NATO ASI Series ((ASIC,volume 318))

Abstract

Theories and models for the generation, propagation and dissipation of long, nonlinear internal waves are reviewed. The roles of dispersive and resonant effects are then discussed in the context of transcritical flow through channels. Recent work on the resonant generation of upstream advancing solitary waves is reviewed. It is shown that these waves (which include non-hydrostatic effects) may be important in the time-dependent hydraulic control problem. The instability of non-linear Kelvin waves in a rotating channel is also discussed and it is shown that this instability may be responsible for observations of wave-front curvature. These processes may be significant in resolving the dynamics of sea straits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armi, L. and Farmer, D. M., 1985. The internal hydraulics of the strait of Gibraltar and associated sills and narrows. Oceanologica Acta, 8, 37–46.

    Google Scholar 

  • Baines, P. G., 1984. A unified description of two-layer flow over topography. J. Fluid Mech., 146, 127–167.

    Article  Google Scholar 

  • Benney, D. J., 1966. Long nonlinear waves in fluid flows. J. Math. Phys., 45, 52–63.

    Google Scholar 

  • Chereskin, T., 1983. Generation of internal waves in Massachusetts Bay. J. Geophys. Res., 88, 2649–2661.

    Article  Google Scholar 

  • Djordjevic, V. D. and Redekopp, L. G., 1978. The fission and disintegration of internal solitary waves moving over two-dimensional topography. J. Phys. Ocean., 8, 1016–1024.

    Article  Google Scholar 

  • Ertekin, R. C., Webster, W. C. and Wehausen, J. V., 1984. Ship generated solitons. Proc. 15th Symp. Naval Hydrodynamics, pp. 347–364.

    Google Scholar 

  • Farmer, D. and Armi, L., 1986. Maximal two-layer exchange over a sill and through the combination of a sill and contraction with barotropic flow. J. Fluid Mech., 164, 53–76.

    Article  Google Scholar 

  • Farmer, D. M. and Smith, J. D., 1980. Tidal interaction of stratified flow with a sill in Knight Inlet. Deep-Sea Res., 27 A, 239–254.

    Article  Google Scholar 

  • Fu, L. L. and Holt, B., 1982. Seasat views oceans and sea ice with synthetic aperature radar. JPL Publications, 81–120, Feb. 15.

    Google Scholar 

  • Gear, J. A., 1985. Strong interactions between solitary waves belonging to different wave modes. Stud. Appl Maths., 72, 95–124.

    Google Scholar 

  • Gear, J. A. and Grimshaw, R., 1984. Weak and strong interactions between internal solitary waves. Stud. Appl. Maths., 71, 235–258.

    Google Scholar 

  • Giese, G. S., Hollander, R. B., Fancher, J. E. and Giese, B. S. 1982. Evidence of coastal seiche excitation by the tide generated internal solitary waves. Geophys. Res. Lett., 9, 1305–1308.

    Article  Google Scholar 

  • Grimshaw, R., 1981. Evolution equations for long, nonlinear internal waves in stratified shear flows. Stud. Appl. Maths., 65, 159–188.

    Google Scholar 

  • Grimshaw, R., 1985. Evolution equations for weakly nonlinear, long internal waves in a rotating fluid. Stud. Appl. Maths., 73, 1–33.

    Google Scholar 

  • Grimshaw, R. and Melville, W. K., 1989. On the derivation of the modified Kadomtsev-Petviashvili equation. Stud. Appl. Maths., 80, 183–202.

    Google Scholar 

  • Grimshaw, R. and Smyth, N., 1986. Resonant flow of a stratified fluid over topography. J. Fluid Mech., 169, 429–464.

    Article  Google Scholar 

  • Hammack, J. L. and Segur, H., 1978. Modelling criteria for long water waves. J. Fluid Mech., 84, 359–373.

    Article  Google Scholar 

  • Haury, L. R., Briscoe, M. G. and Orr, M. H., 1979. Tidally generated internal wave packets in Massachusetts Bay. Nature, 278, 312–317.

    Article  Google Scholar 

  • Helfrich, K. R., 1985. On long nonlinear internal waves over topography. Ph.D. thesis, Dept. of Civil Engineering, MIT.

    Google Scholar 

  • Helfrich, K. R. and Melville, W. K., 1986. On long nonlinear internal waves over slope-shelf topography. J. Fluid Mech., 167, 285–308.

    Article  Google Scholar 

  • Helfrich, K. R. Melville, W. K. and Miles, J. W., 1984. On interfacial solitary waves over slowly varying topography. J. Fluid Mech., 149, 305–317.

    Article  Google Scholar 

  • Hibiya, T., 1986. Generation mechanism of internal waves by tidal flow over a sill. J. Geophys. Res., 91, 7697–7708.

    Article  Google Scholar 

  • Hibiya, T., 1988. The generation of internal waves by tidal flow over Stellwagen Bank. J. Geophys. Res., 93, 533–542.

    Article  Google Scholar 

  • Huang, D. D., Sibul, O. J., Webster, W. C., Wehausen, J. V., Wu, D. M. and Wu, T. Y., 1982. Proc. Conf. on Behavior of Ships in Restricted Waters, Vol. II, pp. 26-1–26-10. Varna, Bulgaria.

    Google Scholar 

  • Kadomtsev, B. B. and Petviashvili, V. I., 1970. On the stability of solitary waves in weakly dispersing media. Soviet Phys. Dokl., 15, 539–541.

    Google Scholar 

  • Kakutani, T. and Matsuuchi, K., 1975. Effect of viscosity on long gravity waves. J. Phys. Soc. Japan, 34, 237–246.

    Google Scholar 

  • Kakutani, T. and Yamasaki, N., 1978. Solitary waves on a two-layer fluid. J. Phys. Soc. Japan, 45, 674–679.

    Article  Google Scholar 

  • Kao, T. W., Pan, F.-S. and Renouard, D., 1985, Internal solitons on the pycnocline: generation, propagation, and shoaling and breaking over a slope. J. Fluid Mech., 159, 19–53.

    Article  Google Scholar 

  • Katsis, C. and Akylas, T. R., 1987. Solitary internal waves in a rotating channel. A numerical study. Phys. Fluids, 30, 297–301.

    Article  Google Scholar 

  • Kinder, T. H., 1984. Net mass transport by internal waves near the Strait of Gibraltar. Geophys. Res. Lett., 11, 987–990.

    Article  Google Scholar 

  • Koop, C. G. and Butler G., 1981. An investigation of internal solitary waves in a two-fluid system. J. Fluid Mech., 112, 225–251.

    Article  Google Scholar 

  • Lansing, F. S. and Maxworthy, T., 1984. On the generation and evolution of internal waves. J. Fluid Mech., 145, 127–149.

    Article  Google Scholar 

  • La Violette, P. E. and Arnone, R. A., 1988. A tide-generated internal waveform in the western approaches to the Strait of Gibraltar. J. Geophys. Res., 93, 15653–15667.

    Article  Google Scholar 

  • Leone, C., Segur, H. and Hammack, J. L., 1982. The viscous decay of long internal solitary waves. Phys. Fluids, 25, 942–944.

    Article  Google Scholar 

  • Liu, A. K., Holbrook, J. R. and Apel, J. R., 1985. Nonlinear internal wave evolution in the Sulu Sea. J. Phys. Ocean., 15, 1613–1624.

    Article  Google Scholar 

  • Macomb, E. S. and Melville, W. K., 1987. On the generation of long nonlinear waves in a channel, (unpublished manuscript).

    Google Scholar 

  • Maslowe, S. A. and Redekopp, L. G., 1980. Long nonlinear waves in stratified shear flows. J. Fluid Mech., 101, 321–348.

    Article  Google Scholar 

  • Maxworthy, T., 1979. A note on internal solitary waves produced by tidal flow over a three-dimensional ridge. J. Geophys. Res., 84, 338–346.

    Article  Google Scholar 

  • Maxworthy, T., 1983. Experiments on solitary internal Kelvin waves. J. Fluid Mech., 129, 365–383.

    Article  Google Scholar 

  • Mei, C. C., 1986. Radiation of solitons by slender bodies advancing in a shallow channel. J. Fluid Mech., 162, 53–67.

    Article  Google Scholar 

  • Melville, W. K., and Helfrich, K. R., 1987. Transcritical two-layer flow over topography. J. Fluid Mech., 178, 31–52.

    Article  Google Scholar 

  • Melville, W. K., Tomasson, G. G. and Renouard, D. P., 1989. On the stability of Kelvin waves. J. Fluid Mech., 206, 1–24.

    Article  Google Scholar 

  • Miles, J. W., 1976. Korteweg de Vries equation modified by viscosity. Phys. Fluids, 19, 1063.

    Article  Google Scholar 

  • Miles, J. W., 1977. Resonantly interacting solitary waves. J. Fluid Mech., 79, 171–179.

    Article  Google Scholar 

  • Miles, J. W., 1978. An axisymmetric Boussinesq solitary wave. J. Fluid Mech., 84, 181–191.

    Article  Google Scholar 

  • Miles, J. W., 1979. On internal solitary waves. Tellus, 31, 456–462.

    Article  Google Scholar 

  • Miles, J. W., 1980. Solitary waves. Ann. Rev. Fluid Mech, 12, 11–43.

    Article  Google Scholar 

  • Miles, J. W., 1986. Stationary, transcritical channel flow. J. Fluid Mech., 162, 489–499.

    Article  Google Scholar 

  • Osborne, A. R. and Burch, T. L., 1980. Internal solitons in the Andaman Sea. Science, 208, 451–459.

    Article  Google Scholar 

  • Pedersen, G., 1988. Three-dimensional wave patterns generated by moving disturbances at transcritical speeds. J. Fluid Mech., 196, 39–69.

    Article  Google Scholar 

  • Renouard, D. P., Chabert d’Hieres, G. and Zhang, X., 1987. An experimental study of strongly nonlinear waves in a rotating system. J. Fluid Mech., 177, 381–394.

    Article  Google Scholar 

  • Rockliff, N., 1984. Long nonlinear waves in stratified shear flows. Geophys. Astrophys. Fluid Dyn., 28, 55–74.

    Article  Google Scholar 

  • Russell, Scott, 1838. Report of the Committee on Waves. Rep. Meet. Brit. Assoc. Advc. Sci., 7th, Liverpool/1837, pp. 417–496.

    Google Scholar 

  • Sandstrom, H. and Elliott, J. A., 1984. Internal tide and solitons on the Scotian Shelf: a nutrient pump at work. J. Geophys. Res., 89, 6415–6426.

    Article  Google Scholar 

  • Segur, H. and Hammack, J. L., 1982. Soliton models of long internal waves. J. Fluid Mech., 118, 285–304.

    Article  Google Scholar 

  • Tomasson, G. G. and Melville, W. K., 1989. Nonlinear and dispersive effects in Kelvin waves. Phys. Fluids, in press.

    Google Scholar 

  • Tung, K.-K., Ko, D. R. S. and Chang, J. J., 1981. Weakly nonlinear internal waves in shear. Stud. Appl Maths., 65, 189–221.

    Google Scholar 

  • Whitham, G. B., 1974. Linear and nonlinear waves. Wiley, New York.

    Google Scholar 

  • Wu, T. Y., 1987. Generation of upstream advancing solitons by moving disturbances. J. Fluid Mech., 184, 75–99.

    Article  Google Scholar 

  • Wu, D. M. and Wu, T. Y., 1982. Three-dimensional nonlinear long waves due to moving surface pressure. Proc. 14th Symp. Naval Hydrodyn., pp. 103–129.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Helfrich, K.R., Melville, W.K. (1990). Review of Dispersive and Resonant Effects in Internal Wave Propagation. In: Pratt, L.J. (eds) The Physical Oceanography of Sea Straits. NATO ASI Series, vol 318. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0677-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0677-8_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6789-8

  • Online ISBN: 978-94-009-0677-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics