Fourier Transform in Non-Euclidean Space and its Applications to Physics

  • M. Kovalyov
  • M. Legare
Part of the NATO ASI Series book series (ASIC, volume 315)

Abstract

In this paper we shortly discuss the theory of Fourier transform on the non-Euclidean space and show how to generalize it to enable us to solve the Dirac equations on the Friedmann - Robertson - Walker space-times. We also indicate possible application of the theory to the description of strong interactions.

Keywords

Dirac Equation Dirac Operator Hyperbolic Space Beltrami Operator Euclidean Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.F. Beardon, The Geometry of Discrete Groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, N.Y., 1983.Google Scholar
  2. 2.
    S.W. Hawking and G.F.R. Ellis, The Large Scale Structure of Space-Time, Cambridge Univrsity Press, Cambridge, 1973.MATHCrossRefGoogle Scholar
  3. 3.
    Y. Choquet-Bruhat and D. Christodoulou, Ann. Scient. Ec. Norm. Sup., 4ème Série, t. 14, 481 (1981).MathSciNetMATHGoogle Scholar
  4. 4.
    F. John, Partial Differential Equations, Springer-Verlag, N.Y. 1978.MATHGoogle Scholar
  5. 5.
    A. Lichnerowicz, Bull. Soc. Math. France 92, 11 (1964).MathSciNetMATHGoogle Scholar
  6. 6.
    H. Yukawa, Proc. Phys. -Math. Soc. (Japan) 17, 48 (1935).MATHGoogle Scholar
  7. 7.
    M. Kovalyov, Hadronic J., 12 (1989).Google Scholar
  8. 8.
    N.D. Birrell and P.C.W. Davies, Quantum Fields in Curved Space, Cambridge University Press, Cambridge, 1982 and references therein.MATHGoogle Scholar
  9. 9.
    L. Parker, Phys. Rev. D3, 346 (1971).Google Scholar
  10. 10.
    L.H. Ford, Phys. Rev. D14, 3304 (1976).Google Scholar
  11. 11.
    G. Schäfer and H. Dehnen, Astron. Asirophys. 54, 823 (1977).Google Scholar
  12. 12.
    J. Audretsch and G. Schäfer, J. Phys. A: Math. Gen. 11, 1583 (1978).CrossRefGoogle Scholar
  13. 13.
    A.A. Grib, S.G. Mamayev, V.M. Mostepanenko, Fortsch. Phys. 28, 173 (1980).MathSciNetCrossRefGoogle Scholar
  14. 14.
    M. Castagnino, L. Chimento, D.D. Harari and C.A. Nünez, J. Math. Phys. 25, 360 (1984).MathSciNetCrossRefGoogle Scholar
  15. 15.
    A.H. Najmi and A.C. Ottewill, Phys. Rev. D30, 2573 (1984).MathSciNetGoogle Scholar
  16. 16.
    L.P. Chimento and M.S. Mollerach, Phys. Rev. D34, 3689 (1986).MathSciNetGoogle Scholar
  17. 17.
    C.J. Isham and J.E. Nelson, Phys. Rev. D10, 3226 (1974).MathSciNetGoogle Scholar

Copyright information

© Kluwer Academic Publisher 1990

Authors and Affiliations

  • M. Kovalyov
    • 1
  • M. Legare
    • 1
  1. 1.Department of MathematicsUniversity of AlbertaEdmontonCanada

Personalised recommendations