Comparison of Spectras in Some Functional Spaces

  • A. Turan Gürkanli
Part of the NATO ASI Series book series (ASIC, volume 315)


In this work we define two different spectras denoted by sp \({}_{{}_{\text{w}}{\text{x}}}{\text{f}}\), spf in the space(S(IRn))′ and investigate some properties of these spectras, where S(IRn) is the Segal algebra containing the vector space of rapidly decreasing functions ϕ(IRn) as a dense subspace and (S(IRn))′ is the topological dual of S(IRn). Finally we prove that spf=sp \({}_{{}_{\text{w}}{\text{x}}}{\text{f}}\). In addition to this, some applications of this work are also given.


Compact Group Banach Algebra Dense Subspace Spectral Synthesis Pointwise Multiplication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Benedek, R.Panzone, The space Lp, with mixed norm. Duke Math. J.28, 301–324(1961)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    J. Benedetto, Spectral synthesis. NewYork 1975.Google Scholar
  3. 3.
    W.F. Donoghue, Distributions and Fourier transforms. NewYork, 1969.zbMATHGoogle Scholar
  4. 4.
    H.G. Feichtinger , A characterization of Wiener’s algebra on locally compact groups. Arch. d.Math.29, 136–140 (1977).MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    H.G. Feichtinger , Banach convolution algebras of Wiener type. Proc. Conf. Functions, series, operators, Budapest (1980) 509–524.Google Scholar
  6. 6.
    H.G. Feichtinger, Un espace de Banach de distributions tempérées sur les groupes localement compacts abéliens. C.R. Acad. Sci. Paris, Sér. A290, 791–794(1980). MathSciNetGoogle Scholar
  7. 7.
    H.G. Feichtinger, On a new Segal algebras, Mh.Math. 92, 269–289(1981).MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    J.J.F. Fournier, Lacunarity for amalgams. Rocky Mountain J. Math. 17/2, 277–294(1985).Google Scholar
  9. 9.
    J.J.F. Fournier, J. Stewart, Amalgams of LP and ℓq. Bull. Amer. Math. Soc. 13, 1–21(1985).MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    R.R. Goldberg, On a space of functions of wiener. Duke Math. J. 34, 683–691(1967).MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    A.T. Gürkanli, On narrow spectral analysis, Glas. Mat. Ser III, 19(39), 271–274(1984).MathSciNetGoogle Scholar
  12. 12.
    A.T. Gürkanli, Spectral analysis of bounded functions. Karadeniz Üniv. Math. J.5., No. 1, 285–292(1982).Google Scholar
  13. 13.
    E.Hewitt and k.a. Ross, Abstract harmonic analysis I, II, Springer-Verlag 1970–1979.Google Scholar
  14. 14.
    F. Holland, Harmonic analysis on amalgams of Lp and ℓq. J. London Math. Soc. (2). 10, 295–305(1975).MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Y. Katznelson, An Introduction to harmonic analysis. NewYork, (1968).zbMATHGoogle Scholar
  16. 16.
    J. Stewart, S.Watson, which amalgams are convolution algebras? Proc. Amer. Math. Soc. (93), Number 4, 621–627(1985).MathSciNetCrossRefGoogle Scholar
  17. 17.
    R. Larsen, T.S.Liu and J.K.Wang, On functions with Fourier transforms in Lp. Michigan Math. J.11, 369–378 (1964).MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    D. Poguntke, Gewisse Segal’sche Algebren auf lokalkompakten gruppen. Arch. Math. 33(1980), 454–460.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    H.Reiter, L1-Algebras and Segal algebras, Lecture Notes in Mathematics 231, Soringer-Verlag(1971)Google Scholar
  20. 20.
    H.Reiter, Classical harmonic analysis and locally compact groups. Oxford University Press (1968)zbMATHGoogle Scholar
  21. 21.
    M.L.Torres De Squire, Multipliers for amalgams and the algebra SO(G). Can. J. Math. Vol. 39, No.l, 123–148(1987).zbMATHCrossRefGoogle Scholar

Copyright information

© kluwer Academic Publisher 1990

Authors and Affiliations

  • A. Turan Gürkanli
    • 1
  1. 1.Faculty of Art and Sciences Department of MathematicsOndokuz Mayis UniversitySamsunTurkey

Personalised recommendations