Skip to main content

Fourier Methods Applicable in the Numerical Solution of Electromagnetic Time-Domain Scattering Problems

  • Chapter
Recent Advances in Fourier Analysis and Its Applications

Part of the book series: NATO ASI Series ((ASIC,volume 315))

  • 478 Accesses

Abstract

In transient electromagnetic scattering problems, Fourier or Laplace transformations are employed to attain a spectral decomposition in terms of solutions of reduced problems of a lower dimensionality. The resulting inversion integrals are evaluated either by contour deformation into the complex frequency or order plane, or by the direct evaluation of one or more Fourier or Bromwich inversion integrals. The modal representations resulting from the former approach provide a detailed physical insight into the scattering process; the latter approach is more suitable for an efficient computation of the desired time-domain solution. Both approaches are illustrated for the “tutorial” scattering problem of transient scattering by a radially inhomogeneous, lossy dielectric circular cylinder embedded in a homogeneous, lossless dielectric. Numerical results are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bojarski, N.N. (1982) “The k-space formulation of the scattering problem in the time domain”, J. Acoust. Soc. Am. 72, 570–584 (This paper includes a comprehensive review of Bojarski’s work).

    Article  MATH  Google Scholar 

  2. Titchmarsh, E.C. (1950) The Theory of Functions, Oxford University Press, London, second edition, Chapter 13.

    Google Scholar 

  3. Franz, W. (1957) Theorie der Beugung elektromagnetischer Wellen, Springer Verlag, Berlin, Chapter 11.

    MATH  Google Scholar 

  4. Michalski, K.A. (1981) “Bibliography of the singularity expansion method and related topics”, Electromagnetics 1, 493–511.

    Article  Google Scholar 

  5. Baum, C.E. (1976) “The singularity expansion method”, in L.B. Felsen (ed.), Transient Electromagnetic Fields, Spinger Verlag, Berlin, Chapter 3.

    Google Scholar 

  6. Baum, C.E. (1976) “Emerging technology for transient and broad-band analysis and synthesis of antennas and scatterers”, Proc. IEEE 64, 1598–1616.

    Article  MathSciNet  Google Scholar 

  7. Baum, C.E. (1978) “Toward an engineering theory of scattering: the singularity and eigenmode expansion methods”, in P.L.E. Uslenghi (ed.), Electromagnetic Scattering, Academic Press, New York, Chapter 15.

    Google Scholar 

  8. Pearson, L.W. and Marin, L. (eds.) (1981) “Special issue on the singularity expansion method”, Electromagnetics 1.

    Google Scholar 

  9. Langenberg, K.-J. (ed.) (1983) “Special issue on transient fields”, Wave Motion 5.

    Google Scholar 

  10. Tijhuis, A.G. and Blok, H. (1984) “SEM approach to the transient scattering by an inhomogeneous, lossless dielectric slab; Part 1: the homogeneous case”, Wave Motion 6, 61–78.

    Article  MathSciNet  MATH  Google Scholar 

  11. Tijhuis, A.G. and Blok, H. (1984) “SEM approach to the transient scattering by an inhomogeneous, lossless dielectric slab; Part 2: the inhomogeneous case”, Wave Motion 6, 167–182.

    Article  MathSciNet  MATH  Google Scholar 

  12. Morgan, M.A. (1984) “Singularity expansion representations of fields and currents in transient scattering”, IEEE Trans. Antennas Propagat. 32, 466–473.

    Article  MATH  Google Scholar 

  13. Morgan, M.A. (1985) “Response to comments regarding SEM representation”, IEEE Trans. Antennas Propagat. 33, 120.

    Article  Google Scholar 

  14. Pearson, L.W. (1984) “A note on the representation of scattered fields as a singularity expansion”, IEEE Trans. Antennas Propagat. 32, 520–524.

    Article  MATH  Google Scholar 

  15. Felsen, L.B. (1984) “Progressing and oscillatory waves for hybrid synthesis of source excited propagation and diffraction”, IEEE Trans. Antennas Propagat. 32, 775–796.

    Article  MathSciNet  MATH  Google Scholar 

  16. Felsen, L.B. (1985) “Comments on early time SEM”, IEEE Trans. Antennas Propagat. 33, 118–119.

    Article  Google Scholar 

  17. Dudley, D.G. (1985) “Comments on SEM and the parametric inverse problem”, IEEE Trans. Antennas Propagat. 33, 119–120.

    Article  Google Scholar 

  18. Tijhuis, A.G. and Van der Weiden, R.M. (1986) “SEM approach to transient scattering by a lossy, radially inhomogeneous dielectric circular cylinder”, Wave Motion 5, 43–63.

    Article  Google Scholar 

  19. Tijhuis, A.G. (1987) Electromagnetic Inverse Profiling: Theory and Numerical Implementation, VNU Science Press, Utrecht, The Netherlands.

    Google Scholar 

  20. Marin, L. (1973) “Natural-mode representation of transient fields”, IEEE Trans. Antennas Propagat. 21, 809–818.

    Article  MathSciNet  Google Scholar 

  21. Abramowitz, M.A. and Stegun, I.A. (1972) Handbook of Mathemathical Functions, Ninth Dover printing, Dover Publications, New York.

    Google Scholar 

  22. Singaraju, B.K., Giri, D.V. and Baum, C.E. (1976) “Further developments in the application of contour integration to the evaluation of the zeros of analytic functions and relevant computer programs”, Air Force Weapons Laboratory Mathematics Notes 42, Air Force Weapons Laboratory, Albuquerque, New Mexico.

    Google Scholar 

  23. Traub, J.F. (1964) Iterative Methods for the Solution of Equations, Prentice-Hall, Englewood Cliffs, New Jersey, Chapter 10.

    MATH  Google Scholar 

  24. Überall, H. and Gaunaurd, G.C. (1981) “The physical content of the singularity expansion method”, Appl Phys. Lett. 39, 362–364.

    Article  Google Scholar 

  25. Howell, W.E. and Überall, H. (1984) “Complex frequency poles of radar scattering from coated conducting spheres”, IEEE Trans. Antennas Propagat. 32, 624–627.

    Article  Google Scholar 

  26. Überall, H. and Gaunaurd, G.C. (1984) “Relation between the ringing of resonances and surface waves in radar scattering”, IEEE Trans. Antennas Propagat. 32, 1071–1079.

    Article  MATH  Google Scholar 

  27. Gaunaurd, G.C. and Werby, M.F. (1985) “Resonance responses of submerged, acoustically excited thick and thin shells”, J. Acoust. Soc. Am. 77, 2081–2093.

    Article  Google Scholar 

  28. Heyman, E. and Felsen, L.B. (1983) “Creeping waves and resonances in transient scattering by smooth convex objects”, IEEE Trans. Antennas Propagat. 31, 426–437.

    Article  MathSciNet  MATH  Google Scholar 

  29. Heyman, E. and Felsen, L.B. (1985) “Wavefront interpretation of SEM resonances, turn-on times and entire functions”, in L.B. Felsen (ed.), Proceedings of the Nato Advanced Workshop on Hybrid Formulation of Wave Propagation and Scattering, IAFE, Castel Gandolfo, Italy, August 30-September 8, 1983, Martinus Nijhoff Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  30. Tijhuis, A.G. (1986) “Angularly propagating waves in a radially inhomogeneous, lossy dielectric circular cylinder and their connection with the natural modes”, IEEE Trans. Antennas Propagat. 34, 813–824.

    Article  Google Scholar 

  31. Miyazaki, Y. (1981) “Scattering and diffraction of electromagnetic waves by inhomogeneous circular cylinder”, Radio Science 16, 1009–1014.

    Article  Google Scholar 

  32. Friedlander, F.G. (1958) Sound Pulses, Cambridge University Press, Cambridge, pp. 149–166.

    MATH  Google Scholar 

  33. Felsen, L.B. and Marcuvitz, N. (1973) Radiation and Scattering of Waves, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  34. Lewin, L., Chang, D.C. and Kuester, E.F. (1977), Electromagnetic Waves and Curved Structures, Peter Peregrinus Ltd., Stevenage, United Kingdom.

    Google Scholar 

  35. Wait, J.R. (1967) “Electromagnetic whispering gallery modes in a dielectric rod”, Radio Science 2, 1005–1007.

    Google Scholar 

  36. Wasylkiwskyj, W. (1975) “Diffraction by a concave perfectly conducting circular cylinder”, IEEE Trans. Antennas Propagat. 23, 480–492.

    Article  Google Scholar 

  37. Mitzner, K.M. (1967) “Numerical solution for transient scattering from a hard surface of arbitrary shape - Retarded potential technique”, J. Acoust. Soc. Am. 42, 391–397.

    Article  MATH  Google Scholar 

  38. Bennett, C.L. and Weeks, W.L. (1970) “Transient scattering from conducting cylinders”, IEEE Trans. Antennas Propagat. 18, 627–633.

    Article  Google Scholar 

  39. Tijhuis, A.G. (1984) “Toward a stable marching-on-in-time method for two-dimensional transient electromagnetic scattering problems”, Radio Science 19, 1311–1317.

    Article  Google Scholar 

  40. Sezginer, A., and Kong, J.A. (1984) “Transient response of line source excitation in cylindrical geometry”, Electromagnetics 4, 35–54.

    Article  Google Scholar 

  41. Moffatt, D.L., Lai, C.Y. and Lee, T. (1984) “Time-domain electromagnetic scattering by open ended circular waveguide and related structure”, Wave Motion 6, 363–387.

    Article  Google Scholar 

  42. Pearson, L.W. (1986) “A construction of the fields radiated by z-directed point sources of current in the presence of a cylindrically layered obstacle”, Radio Science 21, 559–569.

    Article  Google Scholar 

  43. Tijhuis, A.G., Wiemans R. and Kuester, E.F. (1989) “A hybrid method for solving time-domain integral equations in transient scattering”, Journal of Electromagnetic Waves and Applications 3, 485–511.

    Google Scholar 

  44. Dil, J.G. and Blok, H. (1972) “Propagation of electromagnetic surface waves in a radially inhomogeneous optical waveguide”, Optoelectronics 5, 415–428.

    Google Scholar 

  45. IMSL (1987) Math/Library User’s Manual; FORTRAN Subroutines for Mathematical Applications, Version 1.0, Houston, Texas.

    Google Scholar 

  46. Lindberg, R.C. (1966), “Bessel, a subroutine for the generation of Ressel functions with real or complex arguments”, Air Force Weapons Laboratory Mathematics Notes 1, Air Force Weapons Laboratory, Albuquerque, New Mexico.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Tijhuis, A.G. (1990). Fourier Methods Applicable in the Numerical Solution of Electromagnetic Time-Domain Scattering Problems. In: Byrnes, J.S., Byrnes, J.L. (eds) Recent Advances in Fourier Analysis and Its Applications. NATO ASI Series, vol 315. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0665-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0665-5_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6784-3

  • Online ISBN: 978-94-009-0665-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics