A New Approach to Irregular Sampling of Band-Limited Functions

  • Karlheinz Gröchenig
Part of the NATO ASI Series book series (ASIC, volume 315)

Abstract

This is a report on joint work in progress [10,11,12] on irregular sampling by H. G. Feichtinger, University of Vienna, and the author.

Keywords

Sampling Theorem Atomic Decomposition Irregular Sampling Nonharmonic Fourier Series Compact Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Beurling: Local harmonic analysis with some applications to differential operators. In “Some Recent Advances in the Basic Sciences”, p. 109–125, Belfer Grad. School of Science, Annual Science Conference Proc., A. Gelbart, ed. Vol. I, 1962–1964. Google Scholar
  2. [2]
    A. Beurling, P. Malliavin: On the closure of characters and the zeros of entire functions. Acta Math. 118 (1967), 79–95.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    F. J. Beutler: Error-free recovery of signals from irregularly spaced samples. SIAM Review 8 (1966), 328–335.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    P.L.Butzer, W. Splettstößer, R.Stens: The sampling theorem and linear prediction in signal analysis. Jber.d. Dt. Math.-Verein. 90 (1987), 1–70. Google Scholar
  5. [5]
    R.R. Coifman, R. Rochberg Representation theorems for holomorphic and harmonic functions in L p, Asterisque 77 (1980),11–66.MathSciNetMATHGoogle Scholar
  6. [6]
    R. Duffin, A. Schaeffer: A class of nonharmonic Fourier series. Trans. Amer. Math. Soc. 72(1952), 341–366.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    H.G. Feichtinger: Discretization of convolution and reconstruction of band-limited functions. (To appear in J. Approx. Th.).Google Scholar
  8. [8]
    H.G. Feichtinger, K. Gröchenig: A unified approach to atomic decompositions via integrable group representations. Proc. Conf. Lund 1986, “Function Spaces and Applications”, Lecture Notes in Math. 1302 (1988), 52–73. CrossRefGoogle Scholar
  9. [9]
    H.G. Feichtinger, K. Gröchenig: Banach spaces related to integrable group representations and their atomic decompositions I. (To appear in J. Functional Anal.).Google Scholar
  10. [10]
    H.G. Feichtinger, K.Gröchenig: Reconstruction of Band-Limited Functions from Irregular Sampling Values. (Preprint).Google Scholar
  11. [11]
    H.G. Feichtinger, K. Gröchenig: Irregular sampling theorems and series expansions for band-limited functions. (Preprint).Google Scholar
  12. [12]
    H.G. Feichtinger, K. Gröchenig: Error analysis in irregular sampling theory, (in preparation).Google Scholar
  13. [13]
    M. Frazier, B. Jawerth: The ø-transform and applications to distribution spaces. Proc. Conf. Lund 1986, “Function Spaces and Applications”, Lecture Notes in Math. 1302 (1988), 223–246. CrossRefGoogle Scholar
  14. [14]
    K.Gröchenig. Describing functions: atomic decompositions versus frames. (Submitted).Google Scholar
  15. [15]
    J.R. Higgins: Five short stories about the cardinal series. Bull. Amer. Math. Soc. 12 (1985), 45–89.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    A.J. Jerri: The Shannon sampling theorem — its various extensions and applications. A tutorial review. Proc. IEEE 65 (1977), 1565–1596.MATHGoogle Scholar
  17. [17]
    S. Jaffard: A density criterium for frames of complex exponentials. Thèse de Doctorat de l’Ecole Polytechnique (1989)Google Scholar
  18. [18]
    H. Landau: Necessary density conditions for sampling and interpolation of certain entire functions. Acta Math. 117 (1967), 37–52.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    N. Levinson: Gap and Density Theorems. Coll. Publ. 26, Amer. Math. Soc., New York, 1940.Google Scholar
  20. [20]
    F.A. Marvasti: A unified approach to zero-crossing and nonuniform sampling of single and multidimensional systems. Nonuniform, P.O.Box 1505, Oak Park, IL 60304. (1987). Google Scholar
  21. [21]
    A. Papoulis: Signal Analysis. McGraw-Hill. New York. 1977.MATHGoogle Scholar
  22. [22]
    A. Papoulis: Error analysis in sampling theory. Proc. IEEE 54/7 (1966), 957–955. Google Scholar
  23. [23]
    W. Splettspöβer: Unregelmäβige Abtastungen determinierter und zufälliger Signale. In Kolloquium DFG-Schwerpunktprogramm Digitale Signalverarbeitung, H.G. Zimmer, V. Neuhoff, Eds., Gottingen, 1981, p. 1–4. Google Scholar
  24. [24]
    R. Young: An Introduction to Nonharmonic Fourier Series. Academic Press, New York. 1988.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Karlheinz Gröchenig
    • 1
  1. 1.Department of Mathematics U-9Unicersity of ConnecticutUSA

Personalised recommendations