Advertisement

Structural and Functional Aspects of the Photosynthetic Fixation of Carbon Dioxide

  • G. Schneider
  • I. Andersson
  • C.-I. Brändén
  • S. Knight
  • Y. Lindqvist
  • T. Lundqvist
Part of the NATO ASI Series book series (ASIC, volume 314)

Abstract

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) has attracted a lot of interest due to its central role in the carbon metabolism of plants and photosynthetic microorganisms (for a review see (1)). The dual function of this enzyme, catalyzing the primary steps in both photosynthetic carbon dioxide fixation and photorespiration (Figure 1), makes it a challenging target for attempts to improve the efficiency of photosynthesis. Recombinant DNA-techniques provide a promising tool to modify the carboxylase/oxygenase ratio by genetic engineering. However, the application of these techniques requires a detailed knowledge of the catalytic mechanism of the enzyme and the structure of its active site.

Keywords

Large Subunit Metal Binding Site Ribulose Bisphosphate Amino Acid Homology Metal Ligand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Andrews,T.J. and Lorimer,G.H. (1987) in The Biochemistry of Plants (Hatch,M.D.,ed.), Vol.10,pp. 131–218, Academic Press, Orlando, FLGoogle Scholar
  2. (2).
    Lorimer, G. (1981), Biochemistry 20, 1236–1240CrossRefGoogle Scholar
  3. (3).
    Pierce, J., Andrews, T.J. and Lorimer, G. (1986), J. Biol. Chem. 261, 10248–10256Google Scholar
  4. (4).
    Lorimer, G., Andrews, T.J., Pierce, J. and Schloss, J.V. (1986), Phil. Trans. Roy. Soc. London, Ser.B 313, 397–407CrossRefGoogle Scholar
  5. (5).
    Schloss, J.V., Phores, E.F., Long, M.W., Norton, I.L., Stringer, C.D. and Hartman, F.C. (1979), J. Bacteriol. 137, 490–501Google Scholar
  6. (6).
    Hartman, F.C., Stringer, C.D., Omnaas, J., Donnelly, M.I. and Fraij, B. (1982) Arch. Biochem. Biophys. 219, 422–437CrossRefGoogle Scholar
  7. (7).
    Nargang, F., McIntosh, L. and Somerville, C., Molec. gen. Genet. 193, (1984) 220–224CrossRefGoogle Scholar
  8. (8).
    Herndon, C.S., Norton, I.C. and Hartman, F.C. (1982), Biochemistry 21, 1380–1385CrossRefGoogle Scholar
  9. (9).
    Fraij, B. and Hartman, F.C. (1982), J. Biol. Chem. 257, 3501–3505Google Scholar
  10. (10).
    Schneider, G., Lindqvist, Y., Brändén, C.-I. and Lorimer, G.,(1986a) EMBO J. 5, 3409–3415Google Scholar
  11. (11).
    Lundqvist, T. and Schneider, G. (1989a), J.Biol.Chem. 264, 3643–3646Google Scholar
  12. (12.
    ) Lundqvist, T. and Schneider, G. (1989b), J.Biol.Chem., 264, 7078–7083Google Scholar
  13. (13).
    Andersson, I., Knight, S., Schneider, G., Lindqvist, Y., Lundqvist, T., Brändén, C.-I. and Lorimer, G. (1989), Nature 337, 229–234CrossRefGoogle Scholar
  14. (14).
    Chapman, M.S., Se Won Suh, Curmi, P.M.G., Cascio, D., Smith, W.W. and Eisenberg, D. (1987), Nature 329, 354–356CrossRefGoogle Scholar
  15. (15).
    Chapman, M.S., Se Won Suh, Curmi, P.M.G., Cascio, D., Smith, W.W. and Eisenberg, D. (1988), Science 241, 71–74CrossRefGoogle Scholar
  16. (16).
    Lorimer, G., Gutteridge, S. and Madden, M. (1987), in Plant Molecular Biology (eds. D.V. Wettstein and N.-H. Chua) 31–31 (Nato ASI Series A, 140)Google Scholar
  17. (17).
    Estelle, M., Hanks, J., Mclntosh, L. and Somerville, C., (1985), J. Biol. Chem. 260, 9523–9526Google Scholar
  18. (18).
    Robison, P.D., Martin, N.N. and Tabita, F.R. (1979), Biochemistry 18, 4453–4458CrossRefGoogle Scholar
  19. (19).
    Gutteridge, S., Sigal, I., Thomas, B., Arentzen, R., Cordova, A. and Lorimer, G., (1984), EMBO J. 3, 2737–2742Google Scholar
  20. (20).
    Hartman, F.C., Soper, T.S., Niyogi, S.K., Mural, R.J., Foote, R.S., Mitra, S., Lee, E.H., Machanoff, R. and Larimer, W.F., (1987a), J. Biol. Chem., 262, 3496–3501Google Scholar
  21. (21).
    Hartman, F.C., Foote, R.S., Larimer, F.W., Lee, E.H., Machanoff, R., Milanez, S., Mitra, S., Mural R.J., Niyogi, S.K., Smith, H.B., Soper, T.S., and Stringer, C.D. (1987b), In Plant Molecular Biology, (D.V. Wettstein and N.-H. Chua, eds.), pp. 9–20, Plenum Press, New YorkGoogle Scholar
  22. (22).
    Hartman, F.C., Larimer, F.W., Mural, R.J., Machanoff, R. and Soper, T.S. (1987c), Biocem. Biophys. Res. Comm. 145, 1158–1163CrossRefGoogle Scholar
  23. (23).
    Larimer, F.W., Lee, E.H., Mural, R.J., Soper, T.S. and Hartman, F.C. (1987), J.Biol. Chem. 262, 15327–15329Google Scholar
  24. (24).
    Lorimer, G. and Hartman, F.C. (1988), J.Biol.Chem. 263, 6468–6471Google Scholar
  25. (25).
    Niyogi, S.K., Foote, R.S., Mural, R.J., Larimer, F.W., Mitra, S., Soper, T.S., Machanoff, R. and Hartman, F.C. (1986), J. Biol. Chem. 261, 10087–10092Google Scholar
  26. (26).
    Terzaghi, B.E., Laing, W.A., Christeller, J.T., Petersen, G.B. and Hill, D.F. (1986), Biochem. J. 235, 839–846.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • G. Schneider
    • 1
  • I. Andersson
    • 1
  • C.-I. Brändén
    • 1
  • S. Knight
    • 1
  • Y. Lindqvist
    • 1
  • T. Lundqvist
    • 1
  1. 1.Uppsala Biomedical Center Department of Molecular BiologySwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations