Enzymatic and Model Carboxylation and Reduction Reactions for Carbon Dioxide Utilization pp 367-376 | Cite as
Structural and Functional Aspects of the Photosynthetic Fixation of Carbon Dioxide
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) has attracted a lot of interest due to its central role in the carbon metabolism of plants and photosynthetic microorganisms (for a review see (1)). The dual function of this enzyme, catalyzing the primary steps in both photosynthetic carbon dioxide fixation and photorespiration (Figure 1), makes it a challenging target for attempts to improve the efficiency of photosynthesis. Recombinant DNA-techniques provide a promising tool to modify the carboxylase/oxygenase ratio by genetic engineering. However, the application of these techniques requires a detailed knowledge of the catalytic mechanism of the enzyme and the structure of its active site.
Keywords
Large Subunit Metal Binding Site Ribulose Bisphosphate Amino Acid Homology Metal LigandPreview
Unable to display preview. Download preview PDF.
References
- (1).Andrews,T.J. and Lorimer,G.H. (1987) in The Biochemistry of Plants (Hatch,M.D.,ed.), Vol.10,pp. 131–218, Academic Press, Orlando, FLGoogle Scholar
- (2).Lorimer, G. (1981), Biochemistry 20, 1236–1240CrossRefGoogle Scholar
- (3).Pierce, J., Andrews, T.J. and Lorimer, G. (1986), J. Biol. Chem. 261, 10248–10256Google Scholar
- (4).Lorimer, G., Andrews, T.J., Pierce, J. and Schloss, J.V. (1986), Phil. Trans. Roy. Soc. London, Ser.B 313, 397–407CrossRefGoogle Scholar
- (5).Schloss, J.V., Phores, E.F., Long, M.W., Norton, I.L., Stringer, C.D. and Hartman, F.C. (1979), J. Bacteriol. 137, 490–501Google Scholar
- (6).Hartman, F.C., Stringer, C.D., Omnaas, J., Donnelly, M.I. and Fraij, B. (1982) Arch. Biochem. Biophys. 219, 422–437CrossRefGoogle Scholar
- (7).Nargang, F., McIntosh, L. and Somerville, C., Molec. gen. Genet. 193, (1984) 220–224CrossRefGoogle Scholar
- (8).Herndon, C.S., Norton, I.C. and Hartman, F.C. (1982), Biochemistry 21, 1380–1385CrossRefGoogle Scholar
- (9).Fraij, B. and Hartman, F.C. (1982), J. Biol. Chem. 257, 3501–3505Google Scholar
- (10).Schneider, G., Lindqvist, Y., Brändén, C.-I. and Lorimer, G.,(1986a) EMBO J. 5, 3409–3415Google Scholar
- (11).Lundqvist, T. and Schneider, G. (1989a), J.Biol.Chem. 264, 3643–3646Google Scholar
- (12.) Lundqvist, T. and Schneider, G. (1989b), J.Biol.Chem., 264, 7078–7083Google Scholar
- (13).Andersson, I., Knight, S., Schneider, G., Lindqvist, Y., Lundqvist, T., Brändén, C.-I. and Lorimer, G. (1989), Nature 337, 229–234CrossRefGoogle Scholar
- (14).Chapman, M.S., Se Won Suh, Curmi, P.M.G., Cascio, D., Smith, W.W. and Eisenberg, D. (1987), Nature 329, 354–356CrossRefGoogle Scholar
- (15).Chapman, M.S., Se Won Suh, Curmi, P.M.G., Cascio, D., Smith, W.W. and Eisenberg, D. (1988), Science 241, 71–74CrossRefGoogle Scholar
- (16).Lorimer, G., Gutteridge, S. and Madden, M. (1987), in Plant Molecular Biology (eds. D.V. Wettstein and N.-H. Chua) 31–31 (Nato ASI Series A, 140)Google Scholar
- (17).Estelle, M., Hanks, J., Mclntosh, L. and Somerville, C., (1985), J. Biol. Chem. 260, 9523–9526Google Scholar
- (18).Robison, P.D., Martin, N.N. and Tabita, F.R. (1979), Biochemistry 18, 4453–4458CrossRefGoogle Scholar
- (19).Gutteridge, S., Sigal, I., Thomas, B., Arentzen, R., Cordova, A. and Lorimer, G., (1984), EMBO J. 3, 2737–2742Google Scholar
- (20).Hartman, F.C., Soper, T.S., Niyogi, S.K., Mural, R.J., Foote, R.S., Mitra, S., Lee, E.H., Machanoff, R. and Larimer, W.F., (1987a), J. Biol. Chem., 262, 3496–3501Google Scholar
- (21).Hartman, F.C., Foote, R.S., Larimer, F.W., Lee, E.H., Machanoff, R., Milanez, S., Mitra, S., Mural R.J., Niyogi, S.K., Smith, H.B., Soper, T.S., and Stringer, C.D. (1987b), In Plant Molecular Biology, (D.V. Wettstein and N.-H. Chua, eds.), pp. 9–20, Plenum Press, New YorkGoogle Scholar
- (22).Hartman, F.C., Larimer, F.W., Mural, R.J., Machanoff, R. and Soper, T.S. (1987c), Biocem. Biophys. Res. Comm. 145, 1158–1163CrossRefGoogle Scholar
- (23).Larimer, F.W., Lee, E.H., Mural, R.J., Soper, T.S. and Hartman, F.C. (1987), J.Biol. Chem. 262, 15327–15329Google Scholar
- (24).Lorimer, G. and Hartman, F.C. (1988), J.Biol.Chem. 263, 6468–6471Google Scholar
- (25).Niyogi, S.K., Foote, R.S., Mural, R.J., Larimer, F.W., Mitra, S., Soper, T.S., Machanoff, R. and Hartman, F.C. (1986), J. Biol. Chem. 261, 10087–10092Google Scholar
- (26).Terzaghi, B.E., Laing, W.A., Christeller, J.T., Petersen, G.B. and Hill, D.F. (1986), Biochem. J. 235, 839–846.Google Scholar