Determining an Organizing Center for Passive Optical Systems

  • G. Dangelmayr
  • M. Wegelin
Part of the NATO ASI Series book series (ASIC, volume 313)


The Maxwell-Bloch equations underlying passive optical systems are considered. Using MAPLE we determine a highly degenerate singularity which corresponds to the coalescence of a cusp and a degenerate Hopf bifurcation with broken transversality condition. The dynamics associated with the unfolding of this singularity gives rise to a rich variety of different behaviour including, for example, two types of infinite period bifurcations on tori.


Periodic Orbit Hopf Bifurcation Phase Portrait Bifurcation Diagram Center Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Armbruster, An organizing center for optical bistability and self-pulsing, Z. Phys. B 53(1983), 157–166.MathSciNetCrossRefGoogle Scholar
  2. [2]
    D. Armbruster, G. Dangelmayr, W. Güttinger, Imperfection sensitivity of interacting Hopf and steady state bifurcations and their classification, Physica 16D(1985), 99–123.MathSciNetzbMATHGoogle Scholar
  3. [3]
    G. Dangelmayr, D. Armbruster, Classification of Z(2)-equivariant bifurcations with corank two, Proc. London Math. Soc. 46(1983), 517–546.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    G. Dangelmayr, M. Wegelin, On a codimension four bifurcation ocurring in optical bistability, in: Proceedings of the Workshop on Dynamics, Bifurcations and Singularity Theory, 10–14 July 1989, Warwick, to appear.Google Scholar
  5. [5]
    M. Golubitsky, W. F. Langford, Classification and unfoldings of degenerate Hopf bifurcations, J. Diff. Eq. 41(1981), 375–415.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    M. Golubitsky, D. Schaeffer: Singularities and Groups in Bifurcation Theory, Vol.I, Springer 1985.Google Scholar
  7. [7]
    J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer 1983.Google Scholar
  8. [8]
    G. Hu, G. J. Yang, Instability in injected lasers and optical bistable systems, Phys. Rev. A 38(1988), 1979–1989.CrossRefGoogle Scholar
  9. [9]
    L. A. Lugiato, V. Benza, L. M. Narducci, Optical bistability, self-pulsing and higher-order bifurcations, in H. Haken (ed.): Evolution of Order and Chaos in Physics, Chemistry, and Biology, Springer 1982.Google Scholar
  10. [10]
    L. A. Lugiato, L. M. Narducci, R. Lefever, Instabilities, spatial and temporal patterns in passive optical systems, in R. Graham, A. Wunderlin (eds.): Lasers and Synergetics. A Colloquium on Coherence and Self-Organization in Nature, Springer 1987.Google Scholar
  11. [11]
    L. A. Orozco, H. J. Kimble, A. T. Rosenberger, Quantitative test of the single-mode theory of optical bistability, Optics Comm. 62(1987), 54–60.CrossRefGoogle Scholar
  12. [12]
    L. A. Orozco, H. J. Kimble, A. T. Rosenberger, L. A. Lugiato, M. L. Asquini, M. Brambilla, L. M. Narducci, Single-mode instability in optical bistability, Phys. Rev. A 39(1989), 1235–1252.CrossRefGoogle Scholar
  13. [13]
    G. J. Yang, G. Hu, Unstable regions of single-mode optical bistability, Phys. Rev. A 39(1989), 2514–2518.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • G. Dangelmayr
    • 1
  • M. Wegelin
    • 1
  1. 1.Institute for Information SciencesUniversity of TübingenTübingenGermany

Personalised recommendations