Infrared Cosmic Background Radiation

  • Toshio Matsumoto
Conference paper
Part of the Astrophysics and Space Science Library book series (ASSL, volume 164)


Observation of the cosmic background radiation in the infrared region is reviewed.

The redshifted light from stars of the first generation forms diffuse cosmic background radiation in the near-infrared region. Measurement of the sky fluctuation at 2.2μm gives a very low upper limit. The rocket observation of the near-infrared diffuse emission reveals isotropic emission which is possibly ascribed to an extra-galactic origin. The observed brightness and fluctuation are not consistent with the standard scenario of the primeval galaxies.

In the far-infrared region, integrated light of dust emission of the distant galaxies forms another cosmic background radiation. IRAS and the Nagoya-Berkeley rocket experiment found a clear correlation between HI column density and far-infrared sky brightness, however, there remains an uncorrelated isotropic emission component. If we ascribe this emission to be extragalactic origin, a fairly big evolution effect is required.

In the submillimeter region, the Nagoya-Berkeley rocket experiment has shown that the submillimeter cosmic background is much brighter than expected from the 2.74K blackbody spectrum. The excess energy corresponds to about 10% of the 2.74K blackbody, which requires the vast energy generation in the early universe.


Cosmic Background Radiation Column Density Dust Emission Interstellar Dust Interplanetary Dust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akiba, M., Matsumoto, T., and Murakami, H. 1989, submitted to Aatr.Ap.Google Scholar
  2. Boughn, S.P., Saulson, P.T., and Uson, J.M. 1986, Ap. J, 301, 17.ADSCrossRefGoogle Scholar
  3. Boughn, S.P. and Kuhn, J.R., Ap. J., 309, 33.Google Scholar
  4. Boulanger, F and Perault, M. 1988, Ap.J., 330, 964.ADSCrossRefGoogle Scholar
  5. Carr, B.J., Bond, J.R., and Arnett, W.D. 1984, Ap.J., 277, 445.ADSCrossRefGoogle Scholar
  6. Dube, R.R., Wickes, W.C., and Wilkinson, D.T. 1977, Ap.J.(Letters), 215, L51.ADSCrossRefGoogle Scholar
  7. Harwit, M., McNutt, D.P., Shivanandan, K., and Zajak, B.J. 1966, A.J., 71, 1026.ADSCrossRefGoogle Scholar
  8. Hauser, M.G. et al. 1984, Ap.J.(Letters), 278, L15.ADSCrossRefGoogle Scholar
  9. Hayakawa, S., Matsumoto, T., and Nishimura, T. 1970, Space Res., 10, 248.Google Scholar
  10. Hayakawa, S., Matsumoto, T., Matsuo, H., Murakami, H., Sato, S., Lange, A.E., and Richards, P.L. 1987, Pub.Astr.Soc.Japan, 39, 941.ADSGoogle Scholar
  11. Hofmann, W and Lemke, D. 1978, Astr.Ap., 68, 389.ADSGoogle Scholar
  12. Hofmann, W., Lemke, D., Thum, C., and Fahrbach, U. 1973, Nature Phys. Sci., 243,140.ADSCrossRefGoogle Scholar
  13. Lange, A.E., Richards, P.L., Hayakawa, S., Matsumoto, T., Matsuo, H., Murakami, H., and Sato, S. 1989, submitted to Ap.J.Google Scholar
  14. Matsumoto, T., Hayakawa, S., Matsuo, H., Murakami, H., Sato, S., Lange, A.E., and Richards, P.L. 1988a, Ap.J., 329, 567.ADSCrossRefGoogle Scholar
  15. Matsumoto, T., Akiba, M., and Murakami, H. 1988b, Ap.J., 332, 575.ADSCrossRefGoogle Scholar
  16. Partridge, R.B. and Peebles 1967, Ap.J., 148, 377.ADSCrossRefGoogle Scholar
  17. Rowan-Robinson, M and Carr, B 1988, Post-Recombination Universe, ed. N. Kaiser and A.N. Lasenby, p.125.Google Scholar
  18. Terebey, S and Fich, M 1986, Ap. J. Letters, 309, L73.ADSCrossRefGoogle Scholar
  19. Toller, G.N. 1983, Ap.J.(Letters), 266, L79.ADSCrossRefGoogle Scholar
  20. Yoshii, Y. and Takahara, F 1988, Ap.J., 326, 1.ADSCrossRefGoogle Scholar
  21. Wright, E.L. 1981, Ap.J., 250, 1.ADSCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Toshio Matsumoto
    • 1
  1. 1.Department of AstrophysicsNagoya UniversityChikusa-ku, NagoyaJapan

Personalised recommendations