Skip to main content

Part of the book series: European Consortium for Mathematics in Industry ((ECMI,volume 5))

  • 247 Accesses

Abstract

The transistor industry is vast, in its manufacturing aspect, in the wide use of its products, and in the research it generates both applied and fundamental. In universities most of this work is done in physics and electrical engineering departments and little of its mathematical requirements have been taken up by math faculty. Yet there has been extensive work on modeling, analysis and computer algorithms, and there remain many open and significant problems. In this talk I shall describe some of the modeling, give a brief introduction to the equations governing current flow in a device, review some of the analytic and numerical approaches to the solution of these equations, and refer to some specialized problems where analysis is useful.1 In so doing I hope to pique the curiosity of some of my audience into taking a longer look at the rich phenomena in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sze, S. M.: Physics of Semiconductor Devices. John Wiley - Sons, New York, Second Edition, 1981.

    Google Scholar 

  2. Mock, M.S.: Analysis of Mathematical Models of Semiconductor Devices. Dublin: Boole Press 1983.

    MATH  Google Scholar 

  3. Selberherr, Siegfried: Analysis and Simulation of Semiconductor Devices. Springer-Verlag Wien, New York 1984.

    Google Scholar 

  4. Smith, R. A.: Semiconductors. Cambridge: Cambridge University Press 1978.

    Google Scholar 

  5. Markowich, P.A.: The Stationary Semiconductor Device Equations. Springer-Verlag, Wien-New York 1986.

    Google Scholar 

  6. Shockley, W.: Electrons and Holes in Semiconductors. Van Nostrand, New York 1950.

    Google Scholar 

  7. Van Roosbroeck, W.: Theory of flow of electrons and holes in germanium and other semiconductors. Bell System Tech. J., 20 (1950) pp. 560–607.

    Google Scholar 

  8. Bank, R., Jerome, J., and Rose, D.J.: Analytical and numerical aspects of semiconductor device modeling. Computing Methods in Applied Sciences and Engineering V (R. Glowinski and J. Lions, Eds.), North Holland Publishing, Amsterdam (1982), pp. 593–597.

    Google Scholar 

  9. Jerome, J.: Consistency of Semiconductor Modeling: an Existence/Stability Analysis for the Stationary Van Roosbroeck System. SIAM J. Appl. Math., Vol. 45, No. 4, 1985 pp. 565–590.

    MathSciNet  MATH  Google Scholar 

  10. Seidman, T.: Steady state solutions of diffusion reaction systems with electrostatic convection. Nonlinear Anal., 4 (1980), pp. 623–637.

    Article  MathSciNet  MATH  Google Scholar 

  11. Bank, R., Rose, D.J., and Fichtner, W.: Numerical methods for semiconductor simulation. SIAM J. Stat. Sci. Comp., 4 (1983), pp. 416–435.

    Article  MathSciNet  MATH  Google Scholar 

  12. See also: Special Issue on Numerical Simulation of VLSI Devices. IEEE Trans. Electron Devices, Vol. ED-32 (1985).

    Google Scholar 

  13. Gummel, H.K.: A self-consistent iterative scheme for one-dimensional steady state transistor calculations. IEEE Trans. Electron Devices, Vol. ED-11, (1964), pp. 455–465.

    Google Scholar 

  14. Please, C.P.: An Analysis of Semiconductor P-N Junctions. IMA Jour. Appl. Math. (1982) 28, pp. 301–318.

    Article  Google Scholar 

  15. Markowich, P.A., Ringhofer, C.A.: A Singularly Perturbed Boundary Value Problem Modelling a Semiconductor Device. SIAM J. Appl. Math. Vol. 44, No. 2, (1984), pp. 231–256.

    MathSciNet  MATH  Google Scholar 

  16. Ringhofer, C.: An Asymptotic Analysis of a Transient p-n Junction Model. SIAM J. Appl. Math., Vol. 47, No. 3, (1987), pp. 624–642.

    MathSciNet  MATH  Google Scholar 

  17. Cimatti, G.: On the Shape of the Region of Depletion in a P-N Junction. Bollettino U.M.I. (5) 18-B (1981), pp. 393–409.

    Google Scholar 

  18. Rubinstein, I.: Multiple Steady States in One-Dimensional Electrodiffusion with Local Electroneutrality. SIAM J. Appl. Math., Vol. 47, No. 5, (1987), pp. 1076–1093.

    MathSciNet  Google Scholar 

  19. Pao, H.C., Sah, C.T.: Effects of Diffusion Current on Characteristics of Metal-Oxide (insulator)-Semiconductor Transistors. Solid-State Electronics, Vol. 9 (1966) pp. 927–937.

    Article  Google Scholar 

  20. Brews, J.: A Charge-Sheet Model of the MOSFET. Solid-State Electronics, 21, (1978) pp. 345–355.

    Article  Google Scholar 

  21. Ihantola, H.K., Moll, J.L.: Design Theory of a Surface Field-Effect Transistor. Solid-State Electronics, 7, (1964) pp. 423–430.

    Article  Google Scholar 

  22. Pierret, R.F., Shields, J.A.: Simplified Long-Channel MOSFET Theory. Solid-State Electronics, Vol. 26 (1983) pp. 143–147.

    Article  Google Scholar 

  23. Van De Wiele, F.: A Long-Channel MOSFET Model. Solid State Electronics, Vol. 22, (1979), pp. 991–997.

    Article  Google Scholar 

  24. Ward, M., Odeh, F., Cohen, D.S.: Asymptotic Methods for MOSFET Modeling. Accepted by SIAM J. Appl. Math.

    Google Scholar 

  25. Berger, H.H.: Models for Contacts to Planar Devices. Solid-State Electronics, Vol. 15, (1972), p. 145.

    Article  Google Scholar 

  26. Loh, W.M., Swirhern, S.E., Schoeyer, T.A., Swandon, K.C. Saraswat: Modeling and Measurement of Contact Resistances. IEEE Trans. Electron Devices, Vol. ED-34, No. 3, (1987), pp. 512–524.

    Article  Google Scholar 

  27. Cumberbatch, E., Fang, W.: Three-Dimensional Modelling for Contact Resistance of Current Flow into a Source/Drain Region. Claremont Graduate School, Math Department, Preprint. 1988.

    Google Scholar 

  28. Gribben, R.J., Martelli, M., Rykken, C., Meiser, V., Turner, G., Wang. Q.: Parameter Extraction and Transistor Model. Mathematics Clinic, Claremont Graduate School, Final Report, 1985.

    Google Scholar 

  29. Gribben, R.J., Martelli, M.: Optimal parameter extraction of the Brews charge-sheet MOSFET model. Math. Engng. hid., Vol 1, No. 2, 1987, pp. 155–168.

    MATH  Google Scholar 

  30. Andersson, G., Allen, D., Fleishman, R., Hamza, H., Lacey, S., Larsson, K., Panagiotacopulos, D., Velasco-Hernandez, J.: Parameter Extraction from a Nonlinear MOSFET Model. Mathematics Clinic, Claremont Graduate School, Final Report, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 B. G. Teubner Stuttgart and Kluwer Academic Publishers

About this chapter

Cite this chapter

Cumberbatch, E. (1990). Modeling for Field-Effect Transistors. In: Manley, J., McKee, S., Owens, D. (eds) Proceedings of the Third European Conference on Mathematics in Industry. European Consortium for Mathematics in Industry, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0629-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0629-7_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6770-6

  • Online ISBN: 978-94-009-0629-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics