Advertisement

Relativistic Reference Frames of Local Observer and Space Radiointerferometer

  • A. N. Alexandrov
  • S. L. Parnovsky
  • V. I. Zhdanov
Conference paper
Part of the International Astronomical Union / Union Astronomique Internationale book series (IAUS, volume 141)

Abstract

In a considerable number of works on relativistic astrometry (see, e.g. Kovalevsky and Brumberg 1986) the reference frames (RFs) are introduced either by means of coordinate representation of a space-time metric, such as using harmonicity conditions (Brumberg and Kopejkin 1989), or on the basis of invariant constructions like Fermi coordinates (Synge 1960; Ashby and Bertotti 1986; Boucher 1986). Both approaches must, probably, be combined in applications. We consider the local observer RFs (LORFs) based on the Fermi coordinates and on the optical ones (Synge 1960), which are rigorously defined for a general metric and are directly related to observable quantities. In particular, the optical RF operates with the observed direction of the light source, whereas the Fermi RF seems to be a natural generalization of the classical Cartesian RF.

Keywords

Reference Frame Gravitational Field Local Observer Inertial Coordinate System Jacobi Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kovalevsky, J. and Brumberg, V.A.: 1986, Relativity in Celestial Mechanics and Astrometry, Proc. IAU Symp. No. 114, D. Reidel, Dordrecht.Google Scholar
  2. Brumberg, V.A. and Kopejkin, S.M.: 1989, “Relativistic theory of celestial reference frames”, in J. Kovalevsky, I.I. Mueller, B. Kolaczek (eds.) Reference Frames in Astronomy and Geophysics, Kluwer Academic Publishers, Dordrecht, pp. 115–141.Google Scholar
  3. Synge, J.L.: 1960, Relativity: The General Theory, North-Holland, AmsterdamzbMATHGoogle Scholar
  4. Ashby, N., and Bertotti, B.: 1986, Phys. Rev. D 34, 2246.MathSciNetADSCrossRefGoogle Scholar
  5. Boucher, C.: 1986, “Relativistic effects in geodynamics”, in J. Kovalevsky and V.A. Brumberg (eds.) Relativity in Celestial Mechanics and Astrometry, D. Reidel, Dordrecht, pp. 241–253.Google Scholar
  6. Finkelstein, A.M., Kreinovich, V.Ya., and Pandey, S.N.: 1983, Ap. Sp. Sci. 94, 233.ADSCrossRefGoogle Scholar
  7. Zeller, G., Soffel, M. Ruder, H., and Schneider, M.: 1986, Veröff. d. Bayer Komm. Int. Erdmes. Munich 48, 218.Google Scholar
  8. Zhu, S.Y., and Groten, E.: 1988, Manuscr. Geod. 13, 33.Google Scholar
  9. Brumberg, V.A.: 1987, Кинемат. и физ. небес. тел 3, 8.Google Scholar
  10. Alexandrov, A.N.: 1981, Acta Phys. Polon. B12, 523.Google Scholar

Copyright information

© IAU 1990

Authors and Affiliations

  • A. N. Alexandrov
    • 1
  • S. L. Parnovsky
    • 1
  • V. I. Zhdanov
    • 1
  1. 1.Astronomical Observatory of Kiev UniversityKievUSSR

Personalised recommendations