Supersonic Turbulent Fragmentation of Giant Molecular Clouds

  • Igor G. Kolesnik
  • Yaroslav Yu. Ohul’Chansky
Part of the Astrophysics and Space Science Library book series (ASSL, volume 162)

Abstract

The statistical description of compressible turbulence in application to GMC are carried out. The initial supersonic turbulent spectrum evolution on the stage of shock wave formation is considered. It is found that interecting shock fronts lead to the flat filamentary structures formation in the supersonic turbulent medium. The clumps size distribution and space filling factor are determined. It is found that these functions depend on a physics of clump’s formation.

Keywords

Molecular Cloud Size Distribution Function Turbulent Medium Compressible Turbulence Giant Molecular Cloud 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bally, J., Langer, W., Stark, A., Wilson, R. (1987) ‘Filamentary structure in the Orion molecular cloud’, Astrophys.J. 312, L45–L49.ADSCrossRefGoogle Scholar
  2. Bardeen, J.M., Bond, J.R., Kaiser, N., Szalay, A.S. (1986) ‘The statistics of peaks of gaussian fields’, Astrophys.J. 304, 15–61.ADSCrossRefGoogle Scholar
  3. Falgarone, E. and Perault, M., (1988) ‘Structure at the 0. 02 pc scale in molecular gas of low H2 column density’, Astron. and Astrophys. 205, L1–L4.ADSGoogle Scholar
  4. Kahane, C., Guilloteau, S., Lukas, K.A (1985) ‘A multyline study of a typical GMC: S147/S153’, Astron. and Astrophys. 146, 325–336.ADSGoogle Scholar
  5. Kalberla, P.M. and Stenholm, L.C. (1983) ‘Evidenz fur turbulenz iminterstellar medium’, Mit.Astron.Gesel., 60, 397–401.ADSGoogle Scholar
  6. Kaplan, S.A. (1958) Interstellar Gasodynamics (in russian), Moscow.Google Scholar
  7. Kleiner, S.C. and Dickman, R.L. (1984) ‘Large-scale structure of the Taurus molecular complex.I’, Astrophys.J. 286, 255–262.ADSCrossRefGoogle Scholar
  8. Kolesnik, I.G. (1987) ‘Formation of giant molecular cloudouds in superclouds and the origin of supersonic turbulence’, Kinematika i Fizika Nebesnykh Tel 3, no.6, 47–56.ADSGoogle Scholar
  9. Larson, R.B. (1981) ‘Turbulence and star formation in molecular clouds’, Mon. Not. R. astr. Soc. 194, 809–826.ADSGoogle Scholar
  10. Moiseev, S.S., Tur, A.V., Yanovsky, V.V. (1976) ‘The spectra and the ways of turbulence generation in compressible fluid’, Sov. Zh. Exp. Teor. Fiz. 71, 1062–1069.ADSGoogle Scholar
  11. Myers, P.C. (1983) ‘Dense cores in dark clouds.III.Subsonic Turbulence’, Astrophys.J. 270, 105–118.ADSCrossRefGoogle Scholar
  12. Ohul’chansky, Ya.Yu. (1988a) ‘The evolution of supersonical turbulence in giant molecular clouds’, Kinematika i Fizika Nebesnykh Tel 4, no.4, 3–12.MathSciNetADSGoogle Scholar
  13. Ohul’chansky, Ya.Yu. (1988b) ‘Statistical characteristics of turbulence in giant molecular clouds’, Inst.Theor.Phys. Preprint, Kiev, ITP-88–168E.Google Scholar
  14. Passot T., and Pouquet, A. (1987)‘Numerical simulations of compressible homogeneous flows in the turbulent regime’, Fluid Mech, 181, 441–463.ADSMATHCrossRefGoogle Scholar
  15. Passot, T., Pouquet, A., Woodward, P. (1988) ‘The plausibility of Kolmogorovtype spectra in molecular clouds’ Astron. and Astrophys. 197, 228–234.ADSMATHGoogle Scholar
  16. Solomon, P.M., Rivolo, A.R., Barrett, J., Yahie, A. (1987) ‘Mass, luminosity, and line width relations of galactic molecular clouds’, Astrophys.J. 269, 531–539.Google Scholar
  17. Terebey, S., Fich, M., Blitz, L., Henkel, C. (1987) ‘The size spectrum of molecular clouds in the outer Galaxy’, Astrophys.J. 308, 357–369ADSCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Igor G. Kolesnik
    • 1
  • Yaroslav Yu. Ohul’Chansky
    • 1
  1. 1.Main Astronomical ObservatoryUkrainian Academy of SciencesKievRussia

Personalised recommendations