Radiative Shocks and Nonequilibrium Chemistry in the Early Universe: Galaxy and Primordial Star Formation

  • Paul R. Shapiro
  • Hyesung Kang
Conference paper
Part of the Astrophysics and Space Science Library book series (ASSL, volume 162)


Shock waves in primordial composition gas occur in a wide range of circumstances in the theory of galaxy and pregalactic star formation. The radiative cooling of the postshock gas is crucial to the successful production of gravitationaily bound fragments. Without such fragmentation, the models do not form stars and galaxies. We have studied in detail the nonequilibrium radiative cooling, recombination, and molecule formation behind steady-state shock waves in primordial composition gas. We have solved the hydrodynamical conservation equations, along with the rate equations fo nonequilibrium ionization, recombination, and molecule formation and the equation of radiative transfer. We find that the shocked gas cools faster than it can recombine and, as a result, is able to form an H2 concentration as high as 10−3 or higher via the formation of H and H 2 + intermediaries due to the enhanced nonequilibrium ionization at 104 K. With such an H2 concentration, the gas cools by rotational-vibrational line excitation of H2 molecules to well below the canonical final temperature of 104 K for a molecule-free gas without metals. This cooling below 104 K significantly lowers the characteristic gravitationaily unstable mass estimated for shocks relative to the value if the gas cooling stops at 104 K. We show that, as the level of external ionizing and dissociating radiation flux is increased, the formation of and cooling by H2 molecules can be inhibited and delayed. In addition to their relevance to the pregalactic and intergalactic medium, shocks such as these may be responsible for the formation of globular clusters inside protogalaxies. The implications of our shock calculations for this model of the origin of globular clusters will also be discussed.


Active Galactic Nucleus Globular Cluster Radiative Cool Gravitational Instability Radiative Shock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shapiro, P. R. 1986, in Galaxy Distances and Deviation from Universal Expansion, eds. B. F. Madore and R. B. Tully (Dordrecht: Reidel), pp. 203–214.Google Scholar
  2. 2.
    Shapiro, P. R. and Kang, H. 1987, in IAU Symposium 117: Dark Matter in the Universe, eds. G. R. Knapp and J. Kormendy (Dordrecht: Reidel), p. 365.Google Scholar
  3. 3.
    Shapiro, P. R. and Kang, H. 1987, Ap. J., 318, 32.ADSCrossRefGoogle Scholar
  4. 4.
    Shapiro, P. R. and Kang, H. 1987, Rev. Mexicana Astron. Astrof., 14, 58.ADSGoogle Scholar
  5. 5.
    Shapiro, P. R. and Kang, H. 1987, in High Redshift and Primeval Galaxies, eds. J. Bergeron, D. Kunth B. Rocca-Volmerange, and J. Tran Thanh Van (Paris: Editions Frontières), pp. 501–515.Google Scholar
  6. 6.
    Kang, H. and Shapiro, P. R. 1990, Ap. J., in press.Google Scholar
  7. 7.
    Kang, H., Shapiro, P. R., Fall, S. M., and Rees, M. J. 1990, Ap. J., in press.Google Scholar
  8. 8.
    Saslaw, W. C. and Zipoy, D. 1967, Nature, 216, 976.ADSCrossRefGoogle Scholar
  9. 9.
    Peebles, P.J.E. and Dicke, R. H. 1968, Ap. J., 154, 891.ADSCrossRefGoogle Scholar
  10. 10.
    Hirasawa, T., Aiza, K., and Taketani, M. 1969, Progr. Theor. Phys., 41, 835.ADSCrossRefGoogle Scholar
  11. 11.
    Hirasawa, T. 1969, Progr. Theor. Phys., 42, 523.ADSCrossRefGoogle Scholar
  12. 12.
    Matsuda, T., Sato, H., and Takeda, H. 1969, Progr. Theor. Phys., 42, 219.ADSCrossRefGoogle Scholar
  13. 13.
    Yoneyama, T. 1972, Pub. Astr. Soc. Japan, 24, 87.ADSGoogle Scholar
  14. 14.
    Hutchins, J. B. 1976, Ap. J., 205, 103.ADSCrossRefGoogle Scholar
  15. 15.
    Silk, J. 1977, Ap. J., 211, 638.ADSCrossRefGoogle Scholar
  16. 16.
    Carlberg, R. G. 1981, M.N.R.A.S., 197, 1021.ADSGoogle Scholar
  17. 17.
    Palla, F., Salpeter, E. E., and Staler, S. W. 1983, Ap. J., 271, 632.ADSCrossRefGoogle Scholar
  18. 18.
    Lepp, S. and Shull, J. M. 1984, Ap. J., 280, 465.ADSCrossRefGoogle Scholar
  19. 19.
    Izotov, Yu. I and Kolesnik, I. G. 1984, Soviet Astr., 28, No. 1, 15.ADSGoogle Scholar
  20. 20.
    Murray, S. D. and Lin, D.N.C. 1989, Ap. J., 339, 933.ADSCrossRefGoogle Scholar
  21. 21.
    Struck-Marcell, C. 1982, Ap. J., 259, 116.ADSCrossRefGoogle Scholar
  22. 22.
    Struck-Marcell, C. 1982, Ap. J., 259, 127.ADSCrossRefGoogle Scholar
  23. 23.
    MacLow, M. M. and Shull, J. M. 1986, Ap. J., 302, 585.ADSCrossRefGoogle Scholar
  24. 24.
    Vishniac, E. T., Ostriker, J. P., and Bertschinger, E. 1985, Ap. J., 291, 399.ADSCrossRefGoogle Scholar
  25. 25.
    Vishniac, E. T. 1983, Ap. J., 274, 152.ADSCrossRefGoogle Scholar
  26. 26.
    Ostriker, J. P. and Cowie, L. L. 1981, Ap. J. (Letters), 243, L127.ADSCrossRefGoogle Scholar
  27. 27.
    Harris, W. F. 1987, P.A.S.P., 99, 1031.ADSCrossRefGoogle Scholar
  28. 28.
    Gunn, J. E. 1980, in Globular Clusters, eds. D. Hanes and B. Madore (Cambridge: Cambridge Uniersity Press), p. 301.Google Scholar
  29. 29.
    McCrea, W. H. 1982, in Progress in Cosmology, ed. A. W. Wolfendale (Dordrecht: Reidel), p. 239.Google Scholar
  30. 30.
    Fall, S. M. and Rees, M. J. 1985, Ap. J., 298, 18.ADSCrossRefGoogle Scholar
  31. 31.
    Fall, S. M. and Rees, M. J. 1988, in I.A.U. Symposium 126: Globular Cluster Systems in Galaxies, eds. J. E. Grindlay and A.G.D. Philip (Dordrecht: Reidel), p. 323.Google Scholar
  32. 32.
    Palla, F. and Zinnecker, H. in The Harlow-Shapley Symposium on Globular Cluster Systems in Galaxies, eds. J. E. Grindlay and A. G. David Philip (IAU), p. 697.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Paul R. Shapiro
    • 1
  • Hyesung Kang
    • 2
  1. 1.Dept. of AstronomyUniversity of TexasAustinUSA
  2. 2.Dept. of AstronomyUniversity of MinnesotaMinneapolisUSA

Personalised recommendations