Developments and present status of terrestrial ecotoxicology

  • E. N. G. Joosse
  • N. M. Van Straalen
Part of the Tasks for vegetation science book series (TAVS, volume 22)


Ecotoxicology is a new science, combining expertise from ecology, toxicology and environmental chemistry. Although the roots of these disciplines are very different, there is a growing tendency for an integrated approach; this is stimulated by the need for ecological risk assessment of chemicals in the environment. Research on metal toxicity in soil invertebrates provides an illustration of this development. On the basis of estimated frequency distributions of sensitivity of soil organisms, soil quality criteria have been derived for cadmium, lead, lindane and atrazine. Contaminant levels in soil exceeding these levels may select for increased resistance in soil animal populations. Physiological and genetic research has shown that metal tolerance can be achieved by decreased assimilation (Zn tolerance in Porcellio scaber) and by increased metal excretion (Cd tolerance in Orchesella cincta). Metal concentrations differ greatly between the various species of the soil arthropod community. As to metal accumulation, soil animals can be classified in two or three groups which do not coincide with feeding habits, but follow the gross taxonomic classification. Development of ecotoxicological theory for species variation in accumulation potential and sensitivity will contribute to a strengthening of the basis for risk assessment of chemicals in the environment.


Metal Resistance Canine Distemper Virus Tolerance Index Oribatid Mite Soil Animal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beeby, A. & Richmond, L., 1987. Adaptation by an urban population of the snail Helix aspersa to a diet contaminated with lead. Environ. Pollut. (A) 46: 73–82.CrossRefGoogle Scholar
  2. Berlin, A. B. & Schaller, K. H., 1974. European standardized method for the determination of δ-aminolevulinic acid de-hydratase activity in blood. Z. Klin. Chem. Klin. Biochem. 12: 389–390.PubMedGoogle Scholar
  3. Brouwer, A., Reijnders, P. J. H. & Koeman, J. H., 1989. Polychlorinated biphenyl (PCB) – contaminated fish induces vitamin A and thyroid hormone deficiency in the common seal (Phoca vitulina). Aquat. Toxicol. 15: 99–106.CrossRefGoogle Scholar
  4. Burch, H. B. & Siegel, A. L., 1971. Improved method for measurement of delta-aminolevulinic acid dehydratase-activ-ity of human erythrocytes. Clin. Chem. 17: 1038–1041.PubMedGoogle Scholar
  5. Chow, T. J., 1970. Lead accumulation in roadside soil and grass. Nature 225: 295–296.PubMedCrossRefGoogle Scholar
  6. Coughtrey, P. J., 1975. Cadmium in terrestrial ecosystems: a case study at Avonmouth, Bristol (U.K.) Ph.D. Thesis, University of Bristol.Google Scholar
  7. Dallinger, R. & Prosi, F., 1988. Heavy metals in the terrestrial isopod Porcellio scaber Latreille. II. Subcellular fractionation of metal-accumulating lysosomes from hepatopancreas. Cell Biol. Toxicol. 4: 97–109.PubMedCrossRefGoogle Scholar
  8. Denneman, C. A. J., Traas, T. P., Van Straalen, N. M. & Joosse, E. N. G., 1989. Ecotoxicologische advieswaarden voor stofgehalten in de bodem. Milieu 4: 8–14.Google Scholar
  9. Domsch, K. H., Jagnow, G. & Anderson, T.-H., 1983. An ecological concept for the assessment of side-effects of agro-chemicals on soil microorganisms. Res. Rev. 86: 65–105.Google Scholar
  10. Dijkshoorn, W. & Lampe, J. E. M., 1975. Availability for ryegrass of cadmium and zinc from dressings of sewage sludge. Neth. J. Agrie. Sei. 23: 338–344.Google Scholar
  11. Ernst, W. H. O., 1969. Zur Physiologie der Schwermetallpflanzen. Subzelluläre Speicherungsorte des Zinks. Ber. Dtsch. Bot. Ges. 82: 161–164.Google Scholar
  12. Ernst, W. H. O., 1972. Zink- und Cadmium-Imissionen auf Böden und Pflanzen in der Umgebung einer Zinkhütte. Ber. Dtsch. Bot. Ges. 85: 295–300.Google Scholar
  13. Ernst, W. H. O., 1974a. Schwermetallvegetation der Erde. Gustav Fischer Verlag, Stuttgart.Google Scholar
  14. Ernst, W. H. O., 1974b. Mechanismen der Schwermetallresistenz. Verh. Ges. Ökol. Erlangen: 189–197.Google Scholar
  15. Ernst, W. H. O., 1981. Problem bei den Begrünung und Aufforstung von Schwermetallhalden. Ber. Int. Symp. Int. Ver. Vegetationsk.: 237–248.Google Scholar
  16. Ernst, W. H. O., 1982. Schwermetallpflanzen. In: H. Kinzel (ed.) Pflanzenökologie und Mineralstoffwechsel, Ulmen, Stuttgart, pp. 472–499.Google Scholar
  17. Ernst, W. H. O., 1983. Ökologische Anpassungsstrategien an Bodenfaktoren. Ber. Dtsch. Bot. Ges. 96: 49–71.Google Scholar
  18. Ernst, W. H. O., 1984. Indicatoren van een overmaat aan zware metalen in terrestrische ecosystemen. In: E.P.H. Best & J. Haeck (eds.) Ecologische indicatoren. Pudoc, Wageningen: 109–120.Google Scholar
  19. Ernst, W. H. O., 1985. Schwermetallimmissionen-Ökophysiologische und populations-genetische Aspekte. Düsseldorfer Geobot. Kolloq. 2: 43–57.Google Scholar
  20. Ernst, W. H. O., Dueck, Th. A. & Lolkema, P. C, 1985. Genetische effecten van emissies van zware metalen op planten. Lucht en Omgeving: 69–72.Google Scholar
  21. Ernst, W. H. O. & Joosse, E. N. G., 1983. Umweltbelastung durch Mineralstoffe. VEB Gustav Fischer Verlag, Jena.Google Scholar
  22. Ernst, W. H. O., Verkleij, J. A. C. & Vooijs, R., 1983. Bioindication of a surplus of heavy metals in terrestrial ecosystems. Environ. Monit. Assessment. 3: 297–305.CrossRefGoogle Scholar
  23. Grue, G. E. D., Hoffman, B. J., Nelson Beyer, W. & Franson, L. P., 1986. Lead concentrations and reproductive success in European starlings Sturnus vulgaris, nesting within highway roadside verges. Environ. Pollut. 42: 157–182.CrossRefGoogle Scholar
  24. Haywood, J. K., 1907. Injury to vegetation and animal life by smelter fumes. J. Am. Chem. Soc. 29: 998–1009.CrossRefGoogle Scholar
  25. Hutton, M., 1980. Metal combination of feral pigeons Columba livia from the London area: part 2 – Biological effects of lead exposure. Environ. Pollut. 22: 281–293.CrossRefGoogle Scholar
  26. Ireland, M. P. & Fisher, E., 1978. Effect of Pb2+ on Fe3+ tissue concentrations and delta-aminolaevulinic acid dehydratase activity in Lumbricus terrestris. Acta Biol. Acad. Sci. Hung. 29: 395–400.PubMedGoogle Scholar
  27. Jackim, E., 1973. Influence of lead and other metals on fish δ-aminolevulinate dehydratase activity. J. Fish. Res. Board Can. 30: 560–562.CrossRefGoogle Scholar
  28. Janssen, M. P. M., 1988. Species dependent cadmium accumulation by forest litter arthropods. In: Proc. Int. Conf. Environmental Contamination, Venice 1988. CEP Consultants, Edinburgh, pp. 436–438.Google Scholar
  29. Janssen, M. P. M., Joosse, E. N. G. & Van Straalen, N. M., 1990. Seasonal variation in the cadmium concentration of litter arthropods from a cadmium contaminated site. Pedo-biologia (in press).Google Scholar
  30. Joosse, E. N. G., Wulffraat, K. J. & Glas, H. P., 1981. Tolerance and acclimation to zinc of the isopod Porcellio scaber Latr. In: Proc. Int. Conf. Heavy metals in the environment, Amsterdam. CEP Consultants, Edinburgh, pp. 425–428.Google Scholar
  31. Joosse, E. N. G. & Verhoef, H. A., 1987. Developments in ecophysiological research on soil invertebrates. Adv. Ecol. Res. 16: 175–248.CrossRefGoogle Scholar
  32. Klerks, P. L. & Weis, J. S., 1987. Genetic adaptation to heavy metals in aquatic organisms: a review. Environ. Pollut. 45: 173–205.PubMedCrossRefGoogle Scholar
  33. Koeman, J. H., 1971. Het voorkomen en de toxicologische betekenis van enkele chloorwaterstoffen aan de Nederlandse kust in de periodes van 1965–1970. Ph.D. Thesis, Rijksuni-versiteit Utrecht.Google Scholar
  34. Koeman, J. H., 1989. Eco toxicology: Present status. In: H. Løkke, H. Tyle & F. Bro-Rasmussen (eds.) Proc. 1st. European Conf. Ecotoxicology. Technical University Denmark, Lyngby, pp. 5–20.Google Scholar
  35. Kraal, H. & Ernst, W. H. O., 1976. Influences of copper high tension lines on plants and soils. Environ. Pollut. 11:131–135.CrossRefGoogle Scholar
  36. Lolkema, P. C, Donker, M. H., Schouten, A. J. & Ernst, W. H. O., 1984. The possible role of metallothioneins in copper tolerance of Silene cucubalus. Planta 162: 174–179.CrossRefGoogle Scholar
  37. Martin, M. H. & Coughtrey, P. J., 1982. Biological monitoring of heavy metal pollution. Applied Science Publishers London.Google Scholar
  38. Mellanby, K., 1972. The biology of pollution. Studies in Biology no. 38. Edward Arnold, London.Google Scholar
  39. Moriarty, F., 1983. Ecotoxicology. The study of pollutants in ecosystems. Academic Press, London.Google Scholar
  40. Osterhaus, A. D. M. E. & Vedder, E. J., 1988. Identification of virus causing recent seal deaths. Nature 335: 20.PubMedCrossRefGoogle Scholar
  41. Pascoe, D., 1983. Toxicology. Studies in Biology no. 149. Edward Arnold, London.Google Scholar
  42. Posthuma, L., 1990. Genetic differentiation between population of Orchesella cincta (Collembola) from heavy metal contaminated sites. J. Appl. Ecol. 27: 609–622.CrossRefGoogle Scholar
  43. Prosi, F. & Dallinger, R., 1988. Heavy metals in the terrestrial isopod Porcellio scaber Latreille. I. Histochemical and ultra-structural characterization of metal-containing lysosomes. Cell Biol. Toxicol. 4: 81–96.PubMedCrossRefGoogle Scholar
  44. Sheehan, P. J., Miller, D. R., Butler, G. C. & Bourdeau, Ph., 1984. Effects of pollutants at the ecosystem level. Scope 22, John Wiley & Sons, Chicester.Google Scholar
  45. Smith, R. A. H. & Bradshaw, A. D., 1970. The reclamation of toxic metalliferous wastes. Nature 227: 376–377.PubMedCrossRefGoogle Scholar
  46. Truhaut, V R., 1969. Ecotoxicology: objectives, principles and perspectives. Ecotox. Environ. Saf. 1: 151–173.CrossRefGoogle Scholar
  47. Van Capelleveen, H. E., 1987. Ecotoxicity of heavy metals for terrestrial isopods. Ph.D. Thesis, Vrije Universiteit Amsterdam.Google Scholar
  48. Van Straalen, N. M., 1988. Ecotoxicologische theorievorming over opname, effecten en doorgifte van Stoffen in dierpo-pulaties. Milieu 3: 40–45.Google Scholar
  49. Van Straalen, N. M., Burghouts, T. B. A., Doornhof, M. J., Groot, G. M., Janssen, M. P. M., Joosse, E. N. G., Van Meerendonk, J. H., Theeuwen, J. P. J. J., Verhoef, H. A. & Zoomer, H. R., 1987. Efficiency of lead and cadmium excretion in populations of Orchesella cincta (Collembola) from various contaminated forest soils. J. Appl. Ecol. 24: 953–968.CrossRefGoogle Scholar
  50. Van Straalen, N. M., De Goede, R. G. M. & Schobben, J. J. M., 1989. Population consequences of cadmium toxicity in soil microarthropods Ecotox. Environ. Saf. 17: 190–204.CrossRefGoogle Scholar
  51. Van Straalen, N. M. & Denneman, C. A. J., 1989. Ecotoxic-ological evaluation of soil quality criteria. Ecotox. Environ. Saf. 18: 241–251.CrossRefGoogle Scholar
  52. Van Straalen, N.M., Geurs, M. & Van der Linden, J. M., 1987. Abundance, pH-preference and mineral content of Oribatida and Collembola in relation to vitality of pine-forests in The Netherlands. In: R. Perry, R.M. Harrison, J.N.B. Bell & J.N. Lester (eds.) Acid Rain: Scientific and Technological Advances. Selper Ltd, London, pp. 674–679.Google Scholar
  53. Van Straalen, N. M., Groot, G. M. & Zoomer, H. R., 1986. Adaptation of Collembola to heavy metal soil contamination. In: Proc. Int. Conf. Environmental Contamination, Amsterdam 1986. CEP Consultants, Edinburgh, pp. 16–20.Google Scholar
  54. Van Straalen, N. M. & Van Wensem, J., 1986. Heavy metal content of forest litter arthropods as related to body-size and trophic level. Environ. Pollut. (A) 42: 209–221.CrossRefGoogle Scholar
  55. Walker, C. H., 1980. Species variations in some hepatic microsomal enzymes that metabolize xenobiotics. Progr. Drug. Met. 5: 113–164.Google Scholar
  56. Williamson, P. & Evans, P. R., 1972. Lead levels in roadside invertebrates and small mammals. Bull. Environ. Contam. Toxicol. 8: 280–288.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • E. N. G. Joosse
    • 1
  • N. M. Van Straalen
    • 1
  1. 1.Department of Ecology and EcotoxicologyVrije Universiteit AmsterdamAmsterdamThe Netherlands

Personalised recommendations