Air pollution and reproductive processes in natural plant species

  • Th. A. Dueck
Part of the Tasks for vegetation science book series (TAVS, volume 22)


At low ambient levels of air pollution, invisible injury to plants such as reductions in vegetative and generative reproduction may lead to reduced fitness of the population. Although current ambient air pollution concentrations are variable in time, they can influence the natural species richness and vegetation composition by reducing growth and seed production. The data available on this subject indicate that air pollutants can indeed inhibit flower production, pollen germination and development, reduce seed filling and increase seed abortion, thus reducing the genetic variation within the population. In the presence of air pollution, seeds often fail to germinate and when germinated, seedling mortality can increase. The nature of seedling spacing and frequency of reseeding grass fields increases plant sensitivity to air pollution.

The available data in air pollutant effects on reproduction in relation to the additional influence of other abiotic or biotic stresses is discussed.


Sulphur Dioxide Pollen Germination Natural Plant Species Natural Species Richness Grass Sward 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ayazloo, M. & Bell, J. N. B., 1981. Studies on the tolerance to sulphur dioxide of grass populations in polluted areas. I. Identification of tolerant populations. New Phytol. 88: 203– 222.CrossRefGoogle Scholar
  2. Bell, J. N. B., 1982. Sulphur dioxide and the growth of grasses. In: M.H. Unsworth & D.P. Ormrod (eds.), Effects of Gaseous Air Pollution in Agriculture and Horticulture, pp. 225– 246. Butterworths, London.Google Scholar
  3. Bell, J. N. B., Rutter, A. J. & Relton, J. 1979. Studies on the effects of low levels of sulphur dioxide on the growth of Lolium perenne L. New Phytol. 83: 627–643.CrossRefGoogle Scholar
  4. Benoit, L. F., Skelly, J. M., Moore, L. D. & Dochinger, L. S., 1983. The influence of ozone on Pinus strobus L. pollen germination. Can. J. For. Res. 13: 184–187.CrossRefGoogle Scholar
  5. Black, V. J., 1982. Effects of sulphur dioxide on physiological processes in plants. In: M.H. Unsworth & D.P. Ormrod (eds.), Effects of Gaseous Air Pollution in Agriculture and Horticulture, pp. 67–91. Butterworths, London.Google Scholar
  6. Bleasdale, J. K. A., 1973. Effects of coal-smoke pollution gases on the growth of ryegrass (Lolium perenne L.). Environ. Pollut. 5: 275–285.CrossRefGoogle Scholar
  7. Cox, R. M., 1988. Sensitivity of forest plant reproduction to long-range transported air pollutants: the effects of wet deposited acidity and copper on reproduction of Populus tremuloides. New Phytol. 110: 33–38.CrossRefGoogle Scholar
  8. Crittenden, P.D. & Read, D. J., 1979. The effects of air pollution on plant growth with special reference to sulphur dioxide. III. Growth studies with Lolium multiflorum Lam. and Dactylis glomerata L. New Phytol. 83: 645–651.CrossRefGoogle Scholar
  9. Dubay, D. T., 1981. Interspecific differences in the effect of sulfur dioxide on angiosperm sexual reproduction. Ph.D. Thesis, Department of Botany, Emory University, Atlanta, Georgia.Google Scholar
  10. Dubay, D. T. & Murdy, W. H., 1983. Direct adverse effects of SO2 on seed set in Geranium carolinianum L.: A consequence of reduced pollen germination on the stigma. Bot. Gaz. 144: 376–381.CrossRefGoogle Scholar
  11. Dueck, Th. A., 1986. Impact of heavy metals and air pollutants on plants. Ph.D. Thesis, Department of Ecology & Ecotoxicology, Free University, Amsterdam.Google Scholar
  12. Dueck, Th. A., 1990. Effect of ammonia and sulphur dioxide on the survival and growth of Calluna vulgaris (L.) Hull seedlings. Funct. Ecol. 4: 109–116.CrossRefGoogle Scholar
  13. Dueck, Th. A., Wolting, H. G., Moet, D. R. & Pasman, F. J. M., 1987. Growth and reproduction of Silene cucubalis Wib. intermittently exposed to low levels of air pollutants, zinc and copper. New Phytol. 105: 633–645.CrossRefGoogle Scholar
  14. Ernst, W. H. O., Tonneijck, A. E. G. & Pasman, F. J. M., 1985. Ecotypic response of Silene cucubalus to air pollutants (SO2, O3). J. Plant Physiol. 118: 439–450.Google Scholar
  15. Freer-Smith, P. H., 1984. The response of six broadleaved trees during long-term exposure to SO2 and NO2. New Phytol. 97: 49–61.CrossRefGoogle Scholar
  16. Harward, M. & Treshow, M., 1975. Impact of ozone on the growth and reproduction of understorey plants in the aspen zone of western U.S.A. Environ. Cons. 2: 17–23.CrossRefGoogle Scholar
  17. Heitschmidt, R. K., Lauenroth, W. K. & Dodd, J. L., 1978. Effects of controlled levels of sulfur dioxide on western wheatgrass in a southeastern Montana grassland. J. Appl. Ecol. 14: 859–868.Google Scholar
  18. Horsman, D. C, Roberts, T. M. & Bradshaw, A. D., 1979. Studies on the effect of sulphur dioxide in perennial ryegrass (Lolium perenne L.). J. Exp. Bot. 30: 495–501.CrossRefGoogle Scholar
  19. Houston, D. B. & Dochinger, L. S., 1977. Effects of ambient air pollution on cone, seed and pollen characteristics in eastern white and red pines. Environ. Pollut. 12: 1–5.CrossRefGoogle Scholar
  20. Jones, T. & Mansfield, T. A., 1982. The effect of SO2 on growth and development of seedlings of Phleum pratense under different light and temperature environments. Environ. Pollut. A 27: 57–71.CrossRefGoogle Scholar
  21. Karnosky, D. F. & Stairs, G. R., 1974. The effects of SO2 on in vitro forest tree pollen germination and tube elongation. J. Environ. Qual. 3: 406–409.CrossRefGoogle Scholar
  22. Mansfield, T A., Davies, W. J. & Whitmore, M. E., 1986. Interactions between the responses of plants to pollution and other environmental factors such as drought, light and temperature. In: How are the effects of air pollutants on agricultural crops influenced by the interaction with other limiting factors? pp. 2–15. COST Workshop 1986, Denmark.Google Scholar
  23. McNeill, S., Bell, J. N. B., Aminu-Kano, M. & Mansfield, P., 1986. SO2, plant, insect and pathogen interactions. In: How are the effects of air pollutants on agricultural crops influenced by the interaction with other limiting factors? pp. 108– 115. COST Workshop 1986, Denmark.Google Scholar
  24. Murdy, W. H., 1979. Effect of SO2 on sexual reproduction in Lepidium virginicum L. originating from regions with different SO2 concentrations. Bot. Gaz. 140: 299–303.CrossRefGoogle Scholar
  25. Okano, K., Ito, O., Takeba, B., Shimizu, A. & Totsuka, T, 1984. Alteration of 13C-assimilate partitioning in plants of Phaseolus vulgaris exposed to ozone. New Phytol. 97: 155– 163.CrossRefGoogle Scholar
  26. Roose, M. L., Bradshaw, A. D. & Roberts, T. M., 1982. Evolution of resistance to gaseous air pollutants. In: M.H. Uns-worth & D.P. Ormrod (eds.), Effects of Gaseous Air Pollution in Agriculture and Horticulture, pp. 379–409. Butter-worths, London.Google Scholar
  27. Scholz, F., Gregorius, H.-R. & Rudin, D., 1989. Genetic Effects of Air Pollutants in Forest Tree Populations. Springer-Verlag. Berlin, Heidelberg.Google Scholar
  28. Taylor Jr., G. E. & Murdy, W. H., 1975. Population differentiation of an annual plant species Geranium carolinianum, in response to sulphur dioxide. Bot. Gaz. 136: 212–215.CrossRefGoogle Scholar
  29. Tingey, D. T. & Taylor Jr., G. E., 1982. Variation in response to ozone: A conceptual model of physiological events. In: M.H. Unsworth & D.P. Ormrod (eds.), Effects of Gaseous Air Pollution in Agriculture and Horticulture, pp. 113–138. But-terworths, London.Google Scholar
  30. Van der Eerden, L. J., Tonneijck, A. E. G. & Wijnands, J. H. M., 1988. Crop loss due to air pollution in The Netherlands. Environ. Pollut. 53: 365–376.PubMedCrossRefGoogle Scholar
  31. Verkleij, J. A. C, Bast-Cramer, W. B. & Koevoets, P., 1989. Genetic studies in populations of Silene cucubalus occurring on various polluted and unpolluted areas. In: F. Scholz, H.-R. Gregorius & D. Rudin (eds.) Genetic Effects of Air Pollutants in Forest Tree Populations, pp. 107–114. Springer-Verlag. Berlin, Heidelberg.Google Scholar
  32. Walmsley, L., Ashmore, M. R. & Bell, J. N. B., 1980. Adaptation of radish Raphanus sativus L. in response to continuous exposure to ozone. Environ. Pollut. A 23: 165–177.CrossRefGoogle Scholar
  33. Whitmore, M. E. & Mansfield, T. A., 1983. Effects of long-term exposures to SO2 and NO2 on Poa pratensis and other grasses. Environ. Pollut. A 31: 217–235.CrossRefGoogle Scholar
  34. Wilson, G. B. & Bell, J. N. B., 1985. Studies on the tolerance to SO2 of grass populations in polluted areas. III. Investigations on the rate of development of tolerance. New Phytol. 100: 63–77.CrossRefGoogle Scholar
  35. Wolters, J. H. B. & Martens, M. J. M., 1987. Effects of air pollutants on pollen. Bot. Rev. 53: 372–414.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Th. A. Dueck
    • 1
  1. 1.Department of Ecology & Soil EcologyResearch Institute for Plant ProtectionWageningenThe Netherlands

Personalised recommendations