Occurrence and function of mycorrhiza in environmentally stressed soils

  • W. E. Van Duin
  • W. A. J. Griffioen
  • J. H. Ietswaart
Part of the Tasks for vegetation science book series (TAVS, volume 22)


Morphological characteristics are given for the different types of mycorrhiza, and their occurrence through the plant kingdom is surveyed, considering some geographical and ecological aspects. Attention is paid to the functioning of mycorrhizas, particulary in a number of stress situations, with an emphasis on salty and heavy metal contaminated soils. For natural populations it can be concluded that in moderately stressed situations a lot of seed plants grow profited by the presence of mycorrhizas, while in heavily stressed situations only a few species grow, having (nearly) no mycorrhizas. Finally it is concluded that fairly much is known on the function of mycorrhizas for crop plants, but very little for natural populations.


Heavy Metal Salt Marsh Mycorrhizal Plant Mycorrhizal Symbiosis Iron Plaque 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, M. F., Moore, T. S. Jr. & Christensen, M., 1980. Phyto-hormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae. I. Cytokinin increases in the host plant. Can. J. Bot. 58: 371–374.CrossRefGoogle Scholar
  2. Allen, M. F., Smith, W. K., Moore, T. S. Jr. & Christensen, M., 1981. Comparative water relations and photosynthesis of mycorrhizal and non-mycorrhizal Bouteloua gracilis. New Phytol. 88: 683–693.CrossRefGoogle Scholar
  3. Amijee, F., Tinker, P. B. & Stribley, D. P., 1989. The development of endomycorrhizal root systems. VII. A detailed study of effects of soil phosphorus on colonization. New Phytol. 111: 435–446.CrossRefGoogle Scholar
  4. Barham, R. O., Marx, D. H. & Ruehle, J. L., 1974. Infections of ectomycorrhizal and nonmycorrhizal roots of shortleaf pine by nematodes and Phytophthora cinnamoni. Phytopathol. 64: 1260–1264.CrossRefGoogle Scholar
  5. Bradley, R., Burt, A. J. & Read, D. J., 1982. The biology of mycorrhiza in the Ericaceae. VIII. The role of mycorrhizal infection in heavy metal resistance. New Phytol. 91: 197–209.CrossRefGoogle Scholar
  6. Cooper, K. M., 1984. Physiology of VA mycorrhizal associations. In: Powell, C. L. & Bagyaraj, D. J. (eds), VA Mycorrhiza, CRC Press, Boca Raton pp. 155–186.Google Scholar
  7. Dehne, H.-W. & Schönbeck, F., 1979. Untersuchungen zum Einfluß der endotrophen Mykorrhiza auf Pflanzenkrankheiten. I. Ausbreitung von Fusarium oxysporum f.sp. lycopersici in Tomaten. Phytopathol. Z. 95: 105–110.CrossRefGoogle Scholar
  8. Denny, H. J. & Wilkins, D. A., 1987. Zinc tolerance in Betula spp. IV. The mechanism of ectomycorrhizal amelioration of zinc toxicity. New Phytol. 106: 545–553.Google Scholar
  9. Englander, C. M. & Corden, M. E., 1971. Stimulation of mycelial growth of Endothia parasitica by heavy metals. Appl. Microbiol. 22: 1012–1016.PubMedGoogle Scholar
  10. Ernst, W. H. O., 1974. Schwermetallvegetation der Erde. Fischer Verlag, Stuttgart.Google Scholar
  11. Ernst, W. H. O., Van Duin, W. E. & Oolbekkink, G. T., 1984. Vesicular-arbuscular mycorrhizae in dune vegetation. Acta Bot. Neerl. 35: 151–160.Google Scholar
  12. Ernst, W. H. O., 1985. Impact of mycorrhiza on metal uptake and translocation by forest plants. Proc. Int. Conf. Heavy Metals Environ. Edinburgh pp. 596–599.Google Scholar
  13. Fitter, A. H., 1977. Influence of mycorrhizal infection on competition for phosphorus and potassium by two grasses. New Phytol. 79: 119–125.CrossRefGoogle Scholar
  14. Gildon, A. & Tinker, P. B., 1981. A heavy metal-tolerant strain of a mycorrhizal fungus. Trans. Br. mycol. Soc. 77: 648–649.CrossRefGoogle Scholar
  15. Gildon, A. & Tinker, P. B., 1983. Interactions of vesicular-arbuscular mycorrhizal infection and heavy metals in plants. I. The effects of heavy metals on the development of vesicular-arbuscular mycorrhizas. New Phytol. 95: 247–261.CrossRefGoogle Scholar
  16. Griffioen, W. A. J. & Ernst, W. H. O., 1990. The role of VA mycorrhiza in the heavy metal tolerance of Agrostis capillaris L. Agric. Ecosyst. & Environ. 29: 173–177.CrossRefGoogle Scholar
  17. Harley, J. L. & Harley, E. L., 1987. A check-list of mycorrhiza in the British flora. New Phytol. suppl. to 105: 1–102.CrossRefGoogle Scholar
  18. Harley, J. L. & Smith, S. E., 1983. Mycorrhizal Symbiosis. Academic Press, London, New York.Google Scholar
  19. Maystead, A., Malajczuk, N. & Grove, T. S., 1988. Underground transfer of nitrogen between pasture plants infected with vesicular-arbuscular mycorrhizal fungi. New Phytol. 108: 417–423.CrossRefGoogle Scholar
  20. Incoll, L. D. & Whitelam, G. C., 1977. The effect of kinetin on stomata of the grass Anthephera pubescens Nees. Planta 137: 243–245.CrossRefGoogle Scholar
  21. Jasper, D. A., Robson, A. D. & Abbott, L. K., 1979. Phosphorus and the formation of vesicular-arbuscular mycorrhizas. Soil Biol. Biochem. 11: 501–505.CrossRefGoogle Scholar
  22. Killham, K. and Firestone, M. K., 1983. Vesicular arbuscular mycorrhizal mediation of grass response to acidic and heavy metal depositions. Plant Soil 72: 39–48.CrossRefGoogle Scholar
  23. Koide, R., Li, M., Lewis, J. & Irby, C., 1988. Role of mycorrhizal infection in growth and reproduction of wild vs. cultivated plants. I. Wild vs. cultivated oats. Oecologia 77: 537–543.CrossRefGoogle Scholar
  24. Mathys, W., 1977. The role of malate, oxalate, and musterd oil glucosides in the evolution of zinc-resistance in herbage plants. Physiol. Plant. 40: 130–136.CrossRefGoogle Scholar
  25. Menge, J. A., Steirle, D., Bagyaraj, D. J., Johnson, E. L. & Leonard, R. T., 1978. Phosphorus concentrations in plants responsible for inhibition of mycorrhizal infection. New Phytol. 80: 575–578.CrossRefGoogle Scholar
  26. Morselt, A. F. W., Smits, W. T. M. & Limonard, T., 1986. Histochemical demonstration of heavy metal tolerance in ectomycorrhizal fungi. Plant Soil 96: 417–420.CrossRefGoogle Scholar
  27. Nishizono, H., Ichikawa, H., Suzuki, S. & Ishii, F., 1987. The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense. Plant Soil 101: 15–20.CrossRefGoogle Scholar
  28. Powell, C. L. & Bagyaraj, D. J. (eds.), 1984. VA Mycorrhiza. CRC Press, Boca Raton.Google Scholar
  29. Rauser, W. E., 1984. Copper-binding protein and copper tolerance in Agrostis gigantea. Plant Sci. Lett. 33: 239–247.CrossRefGoogle Scholar
  30. Reeves, F. B., Wagner, D., Moorman, T & Kiel, J., 1979. The role of endomycorrhizae in revegetation practices in the semi-arid west. I. A comparison of mycorrhizae in several disturbed vs. natural environments. Amer. J. Bot. 66: 6–13.CrossRefGoogle Scholar
  31. Rose, S. L., 1988. Above and below ground community development in a marine sand dune ecosystem. Plant Soil 109: 215–226.CrossRefGoogle Scholar
  32. Rozema, J., Arp, W., Van Esbroek, M. & Broekman, R., 1985. Relaties tussen autotrofe en heterotrofe planten op kwelders. Vakbl. Biol. 65: 465–468.Google Scholar
  33. Rozema, J., Arp, W., Van Esbroek, M., Broekman, R., Punte, H. & Schat, H., 1986a. Vesicular-arbuscular mycorrhiza in salt marsh plants in response to soil salinity and flooding and the significance to the water relations. In: Physiological and Genetical Aspects of Mycorrhizae. INRA, Paris pp. 657–660.Google Scholar
  34. Rozema, J., Arp, W., Van Diggelen, J., Van Esbroek, M., Broekman, R. & Punte, H., 1986b. Occurrence and ecological significance of vesicular-arbuscular mycorrhiza in the salt marsh environment. Acta Bot. Neerl. 35: 457–467.Google Scholar
  35. Safir, G. R., Boyer, J. S. & Gerdemann, J. W., 1972. Nutrient status and mycorrhizal enhancement of water transport in soybean. Plant Physiol. 49: 700–703.PubMedCrossRefGoogle Scholar
  36. Schenck, N. C. (ed.), 1984. Methods and Principles of Mycorrhizal Research. American Phytopathology Society, St. Paul, Minnesota.Google Scholar
  37. Schönbeck, F., 1979. Endomycorrhiza in relation to plant diseases. In: B. Schippers & W. Gams (eds.), Soil-borne Plant Pathogens, Academic Press, London pp. 271–280.Google Scholar
  38. Schönbeck, F. & Spengler, G., 1979. Nachweis von TMV in Mykorrhiza-haltigen Zellen der Tomate mit Hilfe der Immunofluoreszenz. Phytopathol. Z. 94: 84–86.CrossRefGoogle Scholar
  39. Schubert, A. & Hayman, D.S., 1986. Plant growth responses to vesicular-arbuscular mycorrhiza. XVI. Effectiveness of different endophytes at different levels of soil phosphate. New Phytol. 103: 79–90.CrossRefGoogle Scholar
  40. Søndergaard, M. & Laegaard, S., 1977. Vesicular-arbuscular mycorrhiza in some aquatic plants. Nature 268: 232–233.CrossRefGoogle Scholar
  41. Stubblefield, S. P., Taylor, T.N. & Trappe, J. M., 1987. Vesicular-arbuscular mycorrhizae from the Triassic of Antarctica. Amer. J. Bot. 74: 1904–1911.CrossRefGoogle Scholar
  42. Thomson, B.D., Robson, A.D. & Abbott, L.K., 1986. Effects of phosphorus on the formation of mycorrhizas by Gigaspora calospora and Glomus fasciculatum in relation to root carbohydrates. New Phytol. 103: 751–765.CrossRefGoogle Scholar
  43. Tommerup, I. C., 1985. Inhibition of spore germination of vesicular-arbuscular mycorrhizal fungi in soil. Trans. Br. Mycol. Soc. 85: 267–278.CrossRefGoogle Scholar
  44. Van der Zaag, P., Fox, R. L., De La Pena, R. S. & Yost, R. S., 1979. P nutrition of Cassava including mycorrhizal effects on P, K, S, Zn and Ca uptake. Field Crops Res. 2: 253–263.CrossRefGoogle Scholar
  45. Van Duin, W. E., Rozema, J. & Ernst, W. H. O., 1990. Seasonal and spatial variation in the occurrence of vesicular arbuscular (VA) mycorrhiza in salt marsh plants. Agric. Ecosyst. & Environ. 29: 107–110.CrossRefGoogle Scholar
  46. Verkleij, J. A. C., Koevoets, P., Van’t Riet, J., Van Rossen-berg, M., Bank, R. & Ernst, W. H. O., 1989. The role of metal-binding compounds in the copper tolerance mechanism of Silene cucubalus. In: D. H. Hamer & D. R. Winge (eds.), Metal Ion Homeostasis: Molecular Biology and Chemistry. Alan R. Liss, Inc., New York pp. 347–357.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • W. E. Van Duin
    • 1
  • W. A. J. Griffioen
    • 1
  • J. H. Ietswaart
    • 1
  1. 1.Dep. of Ecology and EcotoxicologyVrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations