Skip to main content

Nonlinear Evolution Equations, Quasi-Solitons and their Experimental Manifestation

  • Chapter
Partially Intergrable Evolution Equations in Physics

Part of the book series: NATO ASI Series ((ASIC,volume 310))

Abstract

We review the typical experimental facts which characterize quasisolitons in one-dimensional real systems, in connection with their modeling by nonlinear partial differential equations.We consider these nonlinear waves or excitations in two different domains of the real world : the macroworld and the microworld. In the macroworld we examine typical one-dimensional devices : the electrical networks, the Josephson transmission lines and the optical fibers, where the localized waves or pulses can be simply and coherently created, easily observed and manipulated on a macroscopic scale. In the microworld, we consider the magnetic chains and polymers, where the indirect experimental signatures of the localized nonlinear excitations are more subtle than for the nonlinear macrowaves. We finally discuss some open problems in the complex and important field of biological chains such as DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Section 1:Chapter

  • Benjamin, T.B. and Feir, J.F. (1967). The désintégration of wavetrains on deep water, J Fluid Mech, 27, 417–430.

    Article  ADS  MATH  Google Scholar 

  • Benson, F. A. and Last, D. J. (1965) Nonlinear transmission line harmonic generator. Proc IEEE, 112, 635–643.

    Google Scholar 

  • Berkhoer, A. L and Zakharov, V. E (1976). Self excitation of waves with different polarizations in nonlinear media, Soviet Phys JETP, 31, 486–489.

    ADS  Google Scholar 

  • Chu, P. L. and Whitebread, T. (1978) Applications of solitons to communication system. Electron Lett, 14, 531–532.

    Article  ADS  Google Scholar 

  • Dodd, R. K. Eilbeck, J. C. Gibbon, J. D. and Morris, H. C. (1984) Solitons and nonlinear wave equations, Academic Press, New York.

    Google Scholar 

  • Freeman, R. H. and Karbowiack, A. E. (1977) An investigation of nonlinear transmission lines and shock waves. J Phys D: Appl Phys, 10, 633–643.

    Article  ADS  Google Scholar 

  • Fukushima, K. (1983) Modulated wavetrain in a nonlinear transmission line. J Phys Soc Japan, 52, 376–379.

    Article  ADS  Google Scholar 

  • Fukushima, K. Wadati, M. and Narahara, Y. (1980) Envelope soliton in a new nonlinear transmission line. J Phys Soc Japan, 49, 1593–1597.

    Article  ADS  Google Scholar 

  • Fukushima, K. Wadati, M. Kotera, T. Sawada, K. and Narahara, Y. (1980) Experimental and theoretical study of recurrence phenomena in nonlinear transmission line. J Phys Soc Japan, 48, 1029–1034.

    Article  ADS  Google Scholar 

  • Gasch, A. Wedding, B. and Jäger, D. (1984) Multistability and soliton modes in nonlinear microwave resonators. Appl Phys Lett, 44, 1105–07.

    Article  ADS  Google Scholar 

  • Hirota, R. and K. Susuki, K. (1973) Theoretical and experimental studies of lattice solitons in nonlinear lumped networks. Proc IEEE, 61, 1483–367.

    Article  Google Scholar 

  • Hirota, R. and Susuki, K. (1970) Studies of lattice soliton by using electrical networks. J Phys Soc Japan, 28, 1366–1491.

    Article  ADS  Google Scholar 

  • Inoue, Y. (1976). Nonlinear coupling of polarized plasma waves, J Plasma Phys, 16, 439–459.

    Article  ADS  Google Scholar 

  • Inoue, Y. (1977). Nonlinear interaction of dispersive waves with equal group velocity, J Phys Soc Japan, 16, 243–249.

    ADS  Google Scholar 

  • Jäger, D. (1978) Soliton propagation along periodic transmission lines. Appl Phys, 16, 35–38.

    Article  ADS  Google Scholar 

  • Jäger, D.(1982) Experiments on KdV solitons. J Phys Soc Japan, 51, 1686–1693.

    Article  ADS  Google Scholar 

  • Kako, F. (1979) Propagation of solitons in a dissipative transmission line. J Phys Soc Japan, 47, 1686–1692.

    Article  MathSciNet  ADS  Google Scholar 

  • Karpman, V. I. and Maslov. (1978) E. M. Perturbation theory for solitons, Sov Phys JETP, 46, 281–291.

    MathSciNet  ADS  Google Scholar 

  • Karpman, V. I. and Krushkal, E. M. (1969). Modulated waves in nonlinear dispersive media. Sov Phys JETP, 28, 277–281.

    ADS  Google Scholar 

  • Kawata, T. Sakai, J. and Inoue, H. (1977) Nonlinear dispersive waves and parametric interaction in the transmission line, 60, 339–346.

    Google Scholar 

  • Kofane, T. Michaux, B. and Remoissenet, M. (1988) Theoretical and experimental studies of diatomic lattice solitons using an electrical transmission line. J Phys C: Solid State Phys, 21, 1395–1412.

    Article  ADS  Google Scholar 

  • Kolosick, J. A. Landt, D. L. Hsuan, H. C. and Lonngreen, K. E. (1974) Properties of solitary waves as observed on a nonlinear dispersive transmission line. Proc IEEE, 62, 578–581.

    Article  Google Scholar 

  • Kuusela, T and Hietarinta, J. (1989) Elastic scattering of solitary waves in the strongly dissipative Toda lattice, Phys Rev Lett, 62, 700–703.

    Article  ADS  Google Scholar 

  • Kuusela, T. Hietarinta, J. Kolko, K. and Larbro, R. (1987) Soliton experiments in a nonlinear electrical transmission line. Eur J Phys, 8, 27–33.

    Article  Google Scholar 

  • Landt, D. L. (1972) An experimental simulation of waves in plasmas. Am J Phys, 40, 1493–1497.

    Article  ADS  Google Scholar 

  • Longreen K. E. (1978) ‘ Observation of solitons on nonlinear dispersive transmission lines ’ in Lonngreen, K. and Scott, A. C. (Eds) Solitons in action. Academic Press, New York, pp 127–152.

    Google Scholar 

  • Mankankov, V. G. (1978) Dynamics of classical solitons. Physics Reports, 35, 2–128.

    ADS  Google Scholar 

  • Muroya, K. Saitoh, N. and Watanabe, S (1982) Experiment on lattice soliton by nonlinear LC circuit, observation of a dark soliton, J Phys Soc Japan, 51, 1024–1029.

    Article  ADS  Google Scholar 

  • Nagashima, H. and Amagishi, H. (1979) Experiment on solitons in the dissipative Toda lattice using nonlinear transmission lines. J Phys Soc Japan, 47, 2021–2027.

    Article  ADS  Google Scholar 

  • Nagashima, H. and Amagishi, Y. (1978) Experiment on the Toda lattice using nonlinear transmission lines. J Phys Soc Japan, 45, 680–688.

    Article  ADS  Google Scholar 

  • Nejoh, Y. (1985) Envelope soliton of the electron plasma wave in a nonlinear transmission line. Phys Script, 31, 415–418.

    Article  ADS  Google Scholar 

  • Newell, A. C. (1985). Solitons in mathematics and physics, Soc for Ind and Appl Maths, Philadelphia.

    Google Scholar 

  • Noguchi, A. (1974) Solitons in a nonlinear transmission line. Elec and Commun Japan. 57A, 9–13.

    ADS  Google Scholar 

  • Ostrovskii, L. A and Papko, V. V. (1972) Solitary electromagenetic waves in nonlinear lines. Radiophysics, 15, 438–446.

    Article  MathSciNet  Google Scholar 

  • Paulus, P. Wedding, B. Gasch, A. and Jäger, D. (1984) Bistability and solitons observed in a nonlinear ring resonator. Phys Lett, 102A, 89–92.

    ADS  Google Scholar 

  • Peterson, G. E. (1984) Electrical transmission lines as models forsoliton propagation in materials: elementary aspect of video solitons. AT§TBell Lab Tech J, 63, 901–919.

    Google Scholar 

  • Sakai, J. and Kawata, T. (1976) Nonlinear wave modulation in the transmission line. J Phys Soc Japan, 41, 1819–1820.

    Article  ADS  Google Scholar 

  • Scott, A. C. (1970) Active and nonlinear wave propagation in electronics. Wiley Interscience, New York.

    Google Scholar 

  • Spatschek, K. H. (1978). Coupled localized electron-plasma waves and oscillatory ion-acoustic perturbations, Phys Fluids, 21, 1032–1035.

    Article  ADS  MATH  Google Scholar 

  • Suzuki, K. Hirota and Yoshikawa, K. (1973) The properties of phase modulated soliton trains. Jap J Appl Phys, 12, 361–365.

    Article  ADS  Google Scholar 

  • Suzuki, K. Hirota, R. and Yoshikawa, K. (1973) Amplitude modulated soliton trains and coding-decoding applications. Int J Electron, 34, 777.

    Article  Google Scholar 

  • Takagi, K. (1983) The power spectrum of a white noise passed through a nonlinear transmisión line. Jpn J Appl Phys. 22, 1466.

    Article  ADS  Google Scholar 

  • Tan, M. Su, C.Y. and Anklam, W.J. (1988) 7. electrical pulse compression on an inhomogeneous nonlinear transmission line. Electron Lett, 24, 213–215.

    Article  Google Scholar 

  • Taniuti, T. and Yajima, N. (1969) Perturbation method for a nonlinear wave modulation. J Math Phys, 10, 1369–1372

    Article  MathSciNet  ADS  Google Scholar 

  • Toda, M (1967) Vibrations of a chain with nonlinear interaction. J Phys Soc Japan, 22, 431–436.

    Article  ADS  Google Scholar 

  • Toda, M. (1970) Waves in nonlinear lattice. Prog Theor Phys Japan Suppl. 45, 174–201.

    Article  ADS  Google Scholar 

  • Watanabe, S. (1982) Solitons in nonlinear transmission line. J Phys Soc Japan, 51, 1030–1036.

    Article  ADS  Google Scholar 

  • Watanabe, S. Miyakawa, M. and Muroya, K. (1980) Experiment on recurrence in nonlinear LC circuit. J Phys Soc Japan, 48, 825–831.

    ADS  Google Scholar 

  • Watanabe, S. Miyakawa, M. and Toda, M. (1978) Asymptotic behavior of collisionless shock in nonlinear LC circuit. J Phys Soc Japan, 45, 2030.

    Article  ADS  Google Scholar 

  • Yagi, T and Noguchi, A. (1977) Gyromagnetic nonlinear element and its application as a pulse-shaping transmission line. Electron Letters, 13, 683–685.

    Article  Google Scholar 

  • Yagi, T. and Noguchi, A. (1976) Experimental studies on modulational instability by using nonlinear transmission lines. Elec and Commun in Japan, 59A, 1–6.

    Google Scholar 

  • Yazaki, T and Fukushima, K. (1985) Experimental studies of potential problems in quantum mechanics. Am J Phys, 53, 1186–1191.

    Article  ADS  Google Scholar 

  • Yoshinaga, T. and Kakutani, T. (1980) Solitary and shock waves on a coupled transmission line. J Phys Soc Japan, 49, 2072–2074.

    Article  ADS  Google Scholar 

  • Yoshinaga, T. and Kakutani, T. (1984) Second order KDV soliton on a nonlinear transmission line, J Phys Soc Japan, 53, 85–92.

    Article  ADS  Google Scholar 

  • Yoshinaga, T.Sugimoto, N and Kakutani, T. (1981) Nonlinear wave interactions on a discrete transmission line; J. Phys Soc Japan, 50, 2122–2128.

    Article  MathSciNet  ADS  Google Scholar 

Section 2:Chapter

  • Barone, A. and Paterno, G. (1982) Physics and application of the Josephson effect. Wiley, New York.

    Book  Google Scholar 

  • Chen, J. T. Finnegan, T. F. and Langenberg, D. N. (1971) Physica 55, 413.

    Article  ADS  Google Scholar 

  • Costabile, G and Parmentier, R. D. (1975) Analytic solution for fluxon propagation in Josephson junctions with bias and loss, in low Temperature Physics - LT 14, vol. 14, M. Krusius and M. Vuorio Eds, North Holland, Amsterdam, pp. 112–115.

    Google Scholar 

  • Costabile, G. Parmentier, R. D. Savo, B. Mac Laughlin, D. W and Scott, A. C. (1978) Exact solutions in a long (but finite) Josephson junction. Appl. Phys. Lett. 32, 587–589.

    Article  ADS  Google Scholar 

  • Davidson, A. Ducholm, B. and Pedersen, N. F. (1986) Experiments on soliton motion in annular Josephson Junctions. J. Appl. Phys., 60, 1447–1454.

    Article  ADS  Google Scholar 

  • Feyman, R.P. (1960) Lectures on Physics, Vol. 3 section 21.9. Addison Wesley, New York.

    Google Scholar 

  • Fujmaki, A. Nakajima, K. and Sawada, Y. (1987) Spatiotemporal observation of the Soliton-Antisoliton collision in Josephson Transmission line. Phys. Rev. Lett., 59, 2895–2198.

    Article  ADS  Google Scholar 

  • Fulton, T. A. Magerlein, J. H. and Dynes, R. C. (1976) A Josephson logic design employing current switching junctions. AS 76, 56.

    Google Scholar 

  • Harris, R. E. (1974) Cosine and other terms in the Josephson tunneling current. Phys. Rev. B. 10, 84–94.

    Article  ADS  Google Scholar 

  • Josephson, B. D. (1962) Possible new effects in superconductor tunneling. Phys. Lett. 1, 251–253.

    Article  ADS  MATH  Google Scholar 

  • Josephson, B. D. (1965) Supercurrents through barriers. Adv. Phys. 14, 419–451. see also (1964) Coupled superconductors. Rev Mod Phys, 36, 216–220.

    Article  ADS  Google Scholar 

  • Levring, O. A. Perdersen, N. F and Samulsen, M. R. (1982) Fluxon motion in long overlap and inline Josephson Junctions Appl. Phys. Lett. 40, 846–847.

    Article  ADS  Google Scholar 

  • Likharev. K. K. (1986) Dynamics of Josephson junctions and circuits. Gordon and Breach, New York.

    Google Scholar 

  • Lomdahl, P. S. (1985) Solitons in Josephson junctions: an overview, J Stat Phys, 39, 5/6, 551–561.

    Article  ADS  Google Scholar 

  • Lomsdahl, P. S. Soerensen, O. H. and Christiansen, P. L. (1982). Soliton excitations in Josephson tunnel junctions. Phys Rev. B, 25, 5737–5748.

    Article  ADS  Google Scholar 

  • Matsuda, A and Kawakami, T. (1983) Fluxon propagation on a Josephson Transmission line. Phys. Rev. Lett., 51, 695–697.

    Article  ADS  Google Scholar 

  • Matsuda, A. (1986) Observation of fluxon-antifluxon collision in a Josephson transmission line. Phys. Rev. B, 34, 3127–3135.

    Article  ADS  Google Scholar 

  • Matsuda, A. and Uheara, S. (1982) Observation of fluxon propagation on Josephson transmission line. Appl. Phys. Lett., 41, 770–772.

    Article  ADS  Google Scholar 

  • Me Laughlin, D. W. and Scott, A. C. (1978) Perturbation analysis of fluxon motion. Phys. Rev. A, 18, 1652–1680.

    Article  ADS  Google Scholar 

  • Nitta, J. Matsuda, A and Kawakami, T. (1984) Propagation properties of fluxons in a well damped Josephson transmission line. 55, 2758–2762.

    Google Scholar 

  • Pagano, S. (1987) Nonlinear dynamics in long Josephson junctions, PhD Thesis, Technical Univ of Denmark, Lingby, Denmark.

    Google Scholar 

  • Parmentier (1978).Fluxons in long Josephson Junctions, in Solitons in action, Eds K. Lonngreen and A. C. Scott, Academic Press, New York, pp 173–199.

    Google Scholar 

  • Pedersen, N. F and Welner, D. (1984) Comparison between experiments and perturbation theory for solitons in Josephson junctions. Phys. Rev. B, 29, 2551.

    Article  ADS  Google Scholar 

  • Pedersen, N. F. (1989) Nonlinear properties of Josephson Junctions. Proceedings of the ASI Summerschool on superconducting electronics, Ciccio, Italy Plenum.

    Google Scholar 

  • Scott, A. C. Chu, F. Y. F. and Reible, S. A. (1976) Magnetic flux propagation on a Josephson transmission line. J. Appl. Phys. 47, 3272–3286.

    Article  ADS  Google Scholar 

  • Pedersen, N. F. Samuelsen, M. R. and Welner, D. (1984) Soliton annhilation in the perturbed Sine Gordon system, Phys. Rev. B, 30, 4057–4059.

    Article  ADS  Google Scholar 

  • Scott, A. C. (1964) Distributed device application of the superconducting tunnel junction. Solid State Elee 7, 137–146.

    Article  ADS  Google Scholar 

  • Scott, A. C. (1969) A nonlinear Klein-Gordon equation, Am J Phys, 37, 52–61.

    Article  ADS  Google Scholar 

  • Swihart, J. C. (1961). Field solution for a thin film superconducting strip line. J. Appl. Phys. 32 461–469.

    Article  ADS  Google Scholar 

Section 3:Chapter

  • Agrawal, G. P. Baldeck, P. L. and Alfano, R. R. (1989) Modulational instability induced by cross-phase modulation in optical fibers. Phys Rev A, 39, 3406–3413.

    Article  ADS  Google Scholar 

  • Beaud, P. Hodel, W. Zysset, B. and Weber, H.P (1987) Ultrashort pulse propagation, pulse breakup and fundamental soliton formation in a single mode optical fiber. IEEE J. Quant. Electron, QE.23, 1938–1946.

    Article  ADS  Google Scholar 

  • Blow, J. and Doran, N. J.(1987) Nonlinear effects in optical fibres and fibre devices. IEEE Proc, 134, 138–144.

    Google Scholar 

  • Blow, K. J. and Doran, N. J. (1985) The asymptotic dispersion of soliton pulses in lossy fibres. Opt Commun, 52, 367–370.

    Article  ADS  Google Scholar 

  • Bourkoff, E. Zhao, W. R. I. Joseph, R. I and Christotoulides, D. N. (1987) Evolution of femtosecond pulses in single mode fibers having higher order nonlinearity and dispersion. Opt. Lett., 12, 272–274.

    Article  ADS  Google Scholar 

  • Cotter, D. (1982) Observation of stimulated Brillouin scattering in low loss silica fiber at 1.3μ m. Electron Lett., 18, 495–496.

    Article  Google Scholar 

  • Cotter, D. (1982) Transient stimulated Brillouin scattering in long single mode fibers. Electron Lett., 18, 504–506.

    Article  Google Scholar 

  • Cristodoulides, D. N. and Joseph, R. I. (1985) Femtosecond solitary waves in optical fibers, beyond the slowly varying envelope approximation. Appl Phys Lett, 47, 76–78.

    Article  ADS  Google Scholar 

  • Doran, N. J and Blow, K. J. (1983). Solitons in optical communications. IEEE J Qant Electron. QE-19, 1883–1888.

    Article  ADS  Google Scholar 

  • Firth, W. Peyghambarian, N. and Tallet, A. (1988) Eds, Proceedings of the Int Conf on optical bistability IV, Aussois, France, Part IV, J Phys, Coll C 2, Suppl 6, 49, C-277–342.

    Google Scholar 

  • Gloge, D. (1979) The optical fiber as a transmission medium. Rep Prog Phys, 42, 1777–1824.

    Article  ADS  Google Scholar 

  • Hasegawa, A. and Brinkman, W. F.(1980) Tunable coherent IR and FIR sources utilizing modulational instability. IEEE J. Quant Electron, QE-16, 694–697.

    ADS  Google Scholar 

  • Hasegawa, A.(1983) Amplification and reshaping of optical soliton in a glass fiber. 4 Use of stimulated Raman process. Opt. Lett. 8, 650.

    Article  ADS  Google Scholar 

  • Hasegawa, A. (1984) Generation of a train of soliton pulses by induced modulational instability in optical fibers. Opt. Lett, 9, 288290.

    Article  Google Scholar 

  • Hasegawa, A. and Kodama, Y. (1981) Signal transmission by optical solitons in monomode fiber. Proc. IEEE, 69, 1145–1150.

    Article  ADS  Google Scholar 

  • Hasegawa, A. and Tappert, F. (1973a) Transmission of stationnary nonlinear optical pulses in dispersive dielectric fibers-1. Anomalous dispersion. Appl. Phys. Lett, 23, 142–144.

    Article  ADS  Google Scholar 

  • Hasegawa, A. and Tappert, F. (1973b) Transmission of stationary linear optical pulses in dispersive dielectric fibers-2. Normal dispersion Appl. Phys. Lett. 23, 146–149.

    Google Scholar 

  • Jain, M. and Tzoar, N. (1978) Propagation of nonlinear optical pulses in inhomogeneous media. J. Appl Phys, 49, 4649–4654. ibid Nonlinear pulse propagation in optical fibers. Opt Lett, 3, 202–204.

    Article  ADS  Google Scholar 

  • Jain, M. and Tzoar, N.(1987) Nonlinear pulse propagation in a monomode dielectric guide. IEEE J Qant Elec, QE-23, 510.

    Google Scholar 

  • Kaminov, I. P. (1981) Polarization in optical fibers. IEEE Qant Elec, QE-17, 15–22.

    Article  ADS  Google Scholar 

  • Karpman, V. I. (1975), Nonlinear wave in dispersive media. Pergamon Press, NewYork.

    Google Scholar 

  • Kodama, Y. (1985) Optical solitons in a monomode fiber. J Phys Stat, 39, 5/6, 597–614.

    Article  MathSciNet  Google Scholar 

  • Kodama, Y. and Ablowitz, M. J. (1980) Perturbations of solitons and solitary waves. Stud. Appl. Math, 64, 225–245.

    MathSciNet  Google Scholar 

  • Kodama, Y. and Hasegawa, A. (1987) Nonlinear pulse propagation in a monomode dielectric guide. IEEE J Quant Elec. QE-23, 510–524.

    Article  ADS  Google Scholar 

  • Krokel, D. Halas, N. J. Gianlani, G and Grischowsky, D. (1988) dark pulse propagation in optical fibers. Phys Rev Lett, 60, 29–32.

    Article  ADS  Google Scholar 

  • Menyuk, C.R. (1987a) Nonlinear pulse propagation in birefringent optical fibers. IEEE J. Quant. Electron, QE-23, 174–176.

    Google Scholar 

  • Menyuk, C. R. (1987b) Stability of solitons in birefringent optical fibers. I. equal propagation amplitudes. Opt Lett, 12, 614–616

    Article  ADS  Google Scholar 

  • Menyuk, C. R. (1988) Stability of solitons in birefringent optical fibers. II Arbitrary amplitudes. Opt Lett., 5, 392–402.

    Google Scholar 

  • Mitscke, F. M. and Mollenauer, L. F. (1986) Discovery of the soliton self frequency shift. Opt. Lett, 11, 659–661.

    Article  ADS  Google Scholar 

  • Mollenauer and K. Smith. (1988) Demonstration of soliton transmission over more than 4000 km in fiber with loss periodically compensated bh Raman gain. Opt. Lett., 13, 675–677.

    Article  ADS  Google Scholar 

  • Mollenauer, L. F. and Stolen, R. H. (1984) The soliton laser. Opt lett. 9, 13.

    Article  ADS  Google Scholar 

  • Mollenauer, L. F. and Stolen, R. H. (1982) Solitons in optical fibers. Fiberoptic Technology, April, 193–198.

    Google Scholar 

  • Mollenauer, L. F. Stolen, R. H. and Islam, M. N. (1985) Experimental demonstration of soliton propagation in long films: loss compensated by Raman gain. Opt. Lett. 10, 229–231.

    Article  ADS  Google Scholar 

  • Mollenauer, L. F. Stolen, R. H. and Gordon, J. P. (1980) Experimental observation of picosecond pulse narrowing and solitons in optical fibers, Phys. Rev. Lett, 45, 1095–1098.

    Article  ADS  Google Scholar 

  • Mollenauer, L. F. Stolen, R. H. and Gordon, J. P. and Tomlinson, W. J.(1983) Extreme picosecond pulse narrowing by means of soliton effect in single mode optical fibers. Optics Letter, 8, 289–291.

    Article  ADS  Google Scholar 

  • Salin, F. Grangier. P. Roger, G and Brun, A. (1986) Observation of high order solitons produced by a picosecond ring laser. Phys. Rev. Lett. 56, 1132–1135.

    Article  ADS  Google Scholar 

  • Satsuma, J. and Yajima, S. (1974) Initial value problems of one dimensional self modulation of nonlinear waves in dispersive media. Prog. Theor. Phys. Suppl., 55, 284–306.

    Article  MathSciNet  ADS  Google Scholar 

  • Stegeman, G. I. and Stolen, R. H. (1988) Eds. Nonlinear guided wave phenomena in Optical Physics »Special issue, J Opt Soc Am B, 5.

    Google Scholar 

  • Stolen, R. H. Mollenauer, L. F and Tomlinson, W. J. (1983) Observation of pulse restoration at the soliton period in optical fibers Opt. Lett. 8, 186–188.

    Article  ADS  Google Scholar 

  • Tai, K. Hasegawa, A. and Tomita, A. (1986) Observation of modulation instability in optical fibers. Phys. Rev. Lett., 56, 135–138.

    Article  ADS  Google Scholar 

  • Taniuti, T. (1974) Reductive perturbative method and far fields of wave equations. Phys. Theor. Phys. (Japan), Suppl. 55, 1.

    ADS  Google Scholar 

  • Tratruk, M. V. and Sipe, J. E. (1988) Bound solitary waves in a birefringent optical fiber. Phys. Rev. A 38, 2011–2017.

    Article  ADS  Google Scholar 

  • Wabnitz, C. R. (1988) Modulational polarization instability of light in a nonlinear birefringent dispersive medium. Phys. Rev. A, 38, 2018–2021.

    Article  ADS  Google Scholar 

  • Wai, P. K. Menyuk, C. R. Chen, H and Lee Y. C. (1986) Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers. Opt. Lett, 11, 464–466.

    Article  ADS  Google Scholar 

  • Wai, P. K. Menyuk, C. R. Chen, H and Lee Y. C. (1987) Solitons at the zero dispersion wavelength of a single mode fiber. Opt Lett, 12, 628–630.

    Article  ADS  Google Scholar 

  • Zakharov, V. E. and Shabat, A. B. (1972) Exact theory of two dimensional self focusing and one dimensional self modulation of waves in nonlinear media. Sov. Phys. JETP, 34, 62–69.

    MathSciNet  ADS  Google Scholar 

  • Zhakarov, V. E. and Shabat, A. B. (1973) Interaction between solitons in a stable medium. Sov. Phys. JETP, 37, 823–828.

    ADS  Google Scholar 

  • Zhao, Wand Bourkoff, E. (1988) Femtosecond pulse propagation in optical fibers: higher order effects. IEEE J. Quant Electron., 24, 365–372.

    Article  ADS  Google Scholar 

Section 4:Chapter

  • Balakrishnan, R. and Bishop, A. R. (1985) Nonlinear Excitations on a quantum ferromagnetic chain. Phys Rev Lett, 55, 537–540.

    Article  MathSciNet  ADS  Google Scholar 

  • Balucani, U. Lovesey, S. W., Rasetti, M. G. and Tognetti, V. Eds. (1984) Magnetic excitations and fluctuations. Springer Proceedings in Physics. Springer Verlag_Berlin.

    Google Scholar 

  • Balucani, U. Lovesey, S. W., Rasetti, M. G. and Tognetti, V. Eds. (1987) Magnetic excitations and fluctuations II. Springer Proceedings in Physics 23. Springer Verlag_Jerlin.

    Google Scholar 

  • Bhakta, J. C. (1987) A pair of coupled equations for high frequency Langmuir and dispersive ion- acoustic waves with collisional damping. Plasma Phys and Controlled Fusion. 29, 245–255.

    Article  ADS  Google Scholar 

  • Birgeneau, R. J. and Shirane, G (1978). Magnetism in one dimension. Physics Today, 32, Dec.

    Google Scholar 

  • Borsa, F. Pini, M. G. Rettori, A. and Tognetti, V. (1983) Magnetic specific heat contributions from linear vis à vis nonlinear excitations in the one dimensional antiferromagnet TMMC. Phys Rev B, 28, 5173–5183.

    Article  ADS  Google Scholar 

  • Boucher, J. P. (1980)Solid State Commun, 33, 1025.

    Article  ADS  Google Scholar 

  • Boucher, J. P. (1989). Nonlinear excitations in antiferromagnetic chains. To be published in Proceedings of Nuclear in magnetism. Munich, August 1988.

    Google Scholar 

  • Boucher, J. P. and Renard, J. P. (1980) Nuclear spin lattice relaxation by solitons in the antiferromagnetic chains (CH3)4 NMnCl3. Phys Rev Lett, 45, 486–489.

    Article  ADS  Google Scholar 

  • Boucher, J. P. Pynn, R. Remoissenet, M. Regnault, L. P Endoh, Y. and Renard, J. P. (1989). Newdouble-magnons modes in planar antiferromagnets: a newstudy by polarised-neutron, inelastic scattering of TMMC in a transverse field, to be published.

    Google Scholar 

  • Boucher, J. P. Regnault, L. P. and Benner, H. (1987) Soliton dynamics: experiments on magnetic chains, p 24 In Nonlinearity in condensed matter. Eds A. R. Bishop, D. K. Campbell, P. Kumar and S. E. Trullinger. Springer, Berlin.

    Google Scholar 

  • Boucher, J. P. Regnault, L. P. Rossat Mignot, J. and Henri, Y. (1984) in “Magnetic Excitations and Fluctuations”. Eds F. Lovesey, U. Balucani, F. Borsa and V. Tognetti. Springer, Berlin.

    Google Scholar 

  • Boucher, J. P. Regnault, L. P. Rossat Mignot, J. Renard, J. P. Bouillot, J and Stirling, W. G. (1981) J Appl Phys, 52, 1956–1960.

    Article  ADS  Google Scholar 

  • Cieplak, M. and Turski, L. A. (1980) Solitons in quantum Heisenberg chain. J Phys C, 13, 5741–5747.

    Article  ADS  Google Scholar 

  • Corones, J. (1977) Solitons as nonlinear magnons. Phys Rev B, 16, 1763–1764.

    Article  ADS  Google Scholar 

  • Cowley, R. A., Buyers, W. L. Martel, P. and Stevenson, R. W. (1969) Two magnon scattering of neutrons. Phys Rev Lett, 23, 86–89.

    Article  ADS  Google Scholar 

  • De Gronckel, H. A. De Jonge, W. J. Kopinga, K. and Lemmens, L. F. (1988) Thermal conductivity of some soliton-bearing magnetic systems. Phys Rev B, 37, 9915–9918.

    Article  ADS  Google Scholar 

  • De Groot, H. J. M. De Jonge, L. J. Elmassalami, M. Schmitt. H. H. and Thiel, R. C. (1986) Mössbauer relaxation studies of nonlinear dynamics excitations in low-dimensional magnets. Hyperfine Interactions, 27, 93.

    Article  ADS  Google Scholar 

  • Fogedby, H. C. (1980) Solitons and magnons in the classical Heisenberg chain. J Phys A, 13, 1467–1499.

    Article  MathSciNet  ADS  Google Scholar 

  • Gouvea, M. E and Pires, A, S. (1986) Nonlinear excitations in the classical one-dimensional antiferromagnet. Phys Rev B, 34, 306–317.

    Article  ADS  Google Scholar 

  • Izyumov, Y. A. (1989) Solitons in quasi one dimensional magnetic materials and their study by neutron scattering. Sov Phys Usp, to be published.

    Google Scholar 

  • Kopinga, K. and De Jonge, W. J. (1987) Linear and nonlinear excitations in the S=1/2 ferromagnetic chain system [C6H11NH3] CuBr3 (CHAB), p 167, in Magnetic excitations and fluctuations II. U. Balucani, S. W. Lovesey, M. G. Rasetti and V. Tognetti Eds. Springer Proceedings in Physics 23. Springer Verlag, Berlin.

    Google Scholar 

  • Kakurai, K. Steiner, M. Pynn, R and Dorner, B. (1986) Study of the linear and nonlinear excitations in CsNiF3, by means of polarized neutron scattering. J Mag and Mag Mat, 54–57, 835–836.

    Article  Google Scholar 

  • Kumar, P. (1982) Soliton instability in one-dimensional magnet. Phys. Rev. B 25, 483–486.

    Article  ADS  Google Scholar 

  • Laksmanan, M. (1977) Heisenberg continuum system as an exactly solvable dynamical system. Phys Lett, 53, 53–54.

    Google Scholar 

  • Lindgärd, P. A. (1984), p 163, in Condensed Matter research using neutrons. Eds S. W. Lovesey and R. Scherm. Nato ASI series. Plenum, NewYork.

    Google Scholar 

  • Magyari, E and Thomas, H. (1982) Kink instability in planar ferromagnets. Phys. Rev. B, 25, 531–533.

    Article  ADS  Google Scholar 

  • Makankov, V. G. and Fedyanin, V. K. (1984) Nonlinear effects in quasi-one-dimensional models of condensed matter theory. Phys Rep, 104, 1–86.

    Article  MathSciNet  ADS  Google Scholar 

  • Maki, K. (1980) Quantum statistics of solitons, p 63 in Physics in one dimension. Eds Bernasconi, J. and Schneider, T. Springer, Berlin.

    Google Scholar 

  • Maki, K.(1981) Quantum effects in quasi-one dimensional magnetic systems. Phys Rev B, 24, 3991–332.

    Article  ADS  Google Scholar 

  • Mikeska, H. J. (1981) Solitons in one dimensional ferromagnets. J. Appl. Phys., 52, 1950–1955.

    Article  ADS  Google Scholar 

  • Mikeska, H. J. (1982) Soliton energy in an easy plane quantum spin chain. Phys Rev B, 26, 5213–5222.

    Article  MathSciNet  ADS  Google Scholar 

  • Mikeska, H. J. (1978) Solitons in one-dimensional magnet whith an easy plane. J. Phys. C 11, L29–L32.

    Article  Google Scholar 

  • Mikeska, H. J. (1980) Nonlinear dynamics of classical one dimensional ferromagnets. J. Phys. C, 13, 2913–2923.

    Article  ADS  Google Scholar 

  • Ramirez, A. P. and wolf, W, P. (1982) Specific of CsNiF3: evidence for spin solitons. Phys Rev Lett, 49, 227–229.

    Article  ADS  Google Scholar 

  • Regnault, L. P. Boucher, J. P. Rossat Mignot, J. Renard, J. P. Bouillot, J. and Stirling, W. G. (1982) A neutron investigation of the soliton regime in the one-dimensional planar antiferromagnet (CD3) NMnCb(CD3). J Phys C, 15, 1261–1282.

    Article  ADS  Google Scholar 

  • Remoissenet, M. (1986). Lowamplitude breather and envelope solitons in quasi-one-dimensional physical models. Phys Rev B, 33, 2386–2392.

    Article  ADS  Google Scholar 

  • Remoissenet, M. (1989) Real lattices modelled by the nonlinear Schrödinger equation and its generalization, in Proceedings of workshop “Integrable systems and applications”, Oléron, France June 1988. To be published in Lecture Notes in Mathematics (or Physics). Springer, Berlin.

    Google Scholar 

  • Sahadevan, R. Tamizhmani, K. M. and Lakshmanan, M. (1986) Painlevé analysis and integrability of coumled nonlinear Schrodinger equations. J Phys A: Math Gen, 19, 1783–1791.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Steiner, M. Kakurai, K. and Kjems, J. K. (1983) Experimental studies of the spin dynamics in the 1D ferromagnet with planar anisotropy, CsNiF3, in an external magnetic field J. Magn Mat Mater, 15–18, 1057.

    Google Scholar 

  • Steiner, M. and Kjems, J. K. (1978) Solitons in CSNÍF3: their experimental evidence and their thermodynamics, p 191 in solitons and condensed matter physics. Eds Bishop, A. R. and Schneider J. Springer, Berlin.

    Google Scholar 

  • Tjon, J. and Wright, J. (1977) Solitons in the continuous Heisenberg chain. Phys Rev B, 15, 3470–3476.

    Article  ADS  Google Scholar 

  • Villain, J. (1975) Physica. Propagative spin relaxation in the Ising-like antiferromagnetic linear chain. 79B, 1–12.

    Google Scholar 

  • Wysin, G and Kumar, P. (1987) Thermomagnetic transport coefficients: solitons in an easy plane magnetic chain. Phys Rev B, 13, 7063–7070.

    Article  ADS  Google Scholar 

  • Wysin, G. Bishop, A. R and Kumar, P. (1982) Solitons dynamics on a ferromagnetic chain. J. Phys. C, 15, L337–L344.

    Article  ADS  Google Scholar 

  • Wysin, G. Bishop, A. R and Kumar, P. (1984) Soliton dynamics on an easy plane ferromagnetic chain J. Phys. C, 17, 5975–5992.

    Article  ADS  Google Scholar 

  • Wysin, G. Bishop, A. R and Oitmaa, A. R. (1986) Single kink dynamics in an easy plane classical antiferromagnetic chain. J Phys C, 19, 221–235.

    Article  ADS  Google Scholar 

  • Zhakarov, V. E. and Schulman, E.I. (1982) To the integrability of the system of two coupled nonlinear Schrödinger squations. Physica 4D, 270–274.

    ADS  Google Scholar 

Section 5:Chapter

  • Balanovski, E. (1987). The physics of DNA: onset of sloliton-like excitations, chain relative disorder, and basis for a stastical mechanics of the macromolecule. Int J Theor Phys, 26, 49–61.

    Article  MATH  Google Scholar 

  • Balanowski, E. and Beaconsfield, P. (1985). Solitonlike excitations in biological systems. Phys. Rev. A, 32, 3059–3064.

    Article  ADS  Google Scholar 

  • Banerjee, A. and Sobell, H. M. (1983). Presence of nonlinear excitations in DNA structure and their relationnship to DNA permelting and to drug intercalation. J. Biomol struct. Dyn, 1, 253–262.

    Google Scholar 

  • Barthés, M. (1989) Optical anomalies in acetanalide Davydov solitons, localised modes or Fermi resonance ? To be published in J Mol Liq, special issue.

    Google Scholar 

  • Baverstock, K. F. and Cundall, R. B. (1988). Solitons and energy transfer in DNA. Nature, 322, March 24, 312–313.

    Article  ADS  Google Scholar 

  • Careri, G. Buontempo, U. Galluzi, F. Gratton, E. and Scott, A.C. (1984). Spectroscopic evidence of Davydov like solitons in Acetanilide. Phys. Rev. B, 30, 4689–4703.

    Article  ADS  Google Scholar 

  • Cottingham, J. P. and Scheiwtzer, J. W. (1989) Calculation of the lifetime of a Davydov soliton at finite temperature. Phys Rev Lett, 62, 1792–1795.

    Article  ADS  Google Scholar 

  • Davydov, A. S. (1985). Solitons in Molecular Systems, Reidel, Dordrecht.

    MATH  Google Scholar 

  • Del Giudice, Doglia, S. and Milani, M. (1982) A collective dynamics in metabolically active cells. Phys Script, 26, 232–238.

    Article  ADS  Google Scholar 

  • Dickerson, R. E. (1983). The DNA helix and howit is read. Sci Amer, December, 87–104.

    Google Scholar 

  • Englander, S.W. Kallenbach, N. R. Heeger, A. J. Krumhansl, J. A. and Litwin, S. (1980) Nature of the open state in long polynucleotide double helixes: possibility of solitons excitations, Proc Nat Acad Sei USA, 777, 7222–7226.

    Article  ADS  Google Scholar 

  • Frank-Kamenitskii, M. D. (1985) Fluctational motility of DNA, p 47 in Structure and motions: menbranes, nucleic acids and proteins. Ed E. Clementi, G; Corongiu, M. H. Sarma R. H. Sarma. Adenine Press, NewYork.

    Google Scholar 

  • Freifelder, D. (1987). Molecular biology. Jones and Bartlett, Publishers, Boston.

    Google Scholar 

  • Friedland, P. and Kedes, L. H. (1985) Discovering the secrets of DNA. Commun of ACM, 28, 1164–1186.

    Article  Google Scholar 

  • Fröhlich, H (1969), Quantum mechanical concepts in biology, p 13 in Theoretical Physics and Biology, Eds Marois, North Holland, Amsterdam.

    Google Scholar 

  • Fröhlich, H. (1968). Long range coherence and energy storage in biological systems. Int J Quant Chern, II, 641–649.

    Article  ADS  Google Scholar 

  • Heeger, A. J, Kivelson, S, Schrieffer J. R. and Su, W. P. (1988) Solitons in conducting polymers. Rev Mod Phys, 60, 781–850.

    Article  ADS  Google Scholar 

  • Homma, S and Takeno, S. (1984). A coupled base-rotator model for structure and dynamics of DNA, Prog Theor Phys, 72, 679–693.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hyman, J. M. Mc Laughlin, D.W. and Scott, A. C. (1981). On Davydov’s a- Helix solitons. Physica D, 3D, 23.

    Article  ADS  Google Scholar 

  • Kim, Y. and Prohofsky, E. W. (1987). Vibrational modes of a DNA polymer at low temperature. Phys. Rev. B, 36, 3449–3451.

    Article  ADS  Google Scholar 

  • Krumhansl, J. A. and Alexander, D. M. (1983). Nonlinear dynamics and conformai excitations in biomolecular materials. In structure and Dynamics: Nuclear acids and proteins. Ed. E. Clemente and R. H Sarma. Adenine Press, NewYork.

    Google Scholar 

  • Krumhansl, J. A. Wysin, G.M. Alexander, D. M. Garcia, A. Lomdahl, P.S. Scott P. Layne (1985). Further theoretical studies of (nonlinear) conformational motions in double-helix DNA, 407–415, in Structure and motions: menbranes, nucleic acids and proteins. Ed E. Clementi, G; Corongiu, M. H. Sarma R. H. Sarma. Adenine Press, NewYork.

    Google Scholar 

  • Lewitt, M. (1982). Computer Simulation of DNA Double-helix dynamics Cold Spring Harbor Symp Quant Biol, 46A, 251–262.

    Google Scholar 

  • Lilley, D. M. (1988). DNA opens up, supercoiling and heavy breathing, TIG, 4, 111–121.

    Article  Google Scholar 

  • Lomdahl, P.S. Layne, S.P. and Bigio, I. J. Solitons in biology (1985). Los Alamos Sciences, Spring Issue, 4–21.

    Google Scholar 

  • Lomdahl, P.S. Mac Neil, L. Scott, A. C. Stoneham, M. E. and Webb, S.J. (1982). An assignment to internal soliton vibrations of Laser Raman from living cells. Phys. Lett. 92 A, 207–210.

    ADS  Google Scholar 

  • Mei, W. N. Kohli, M. Prohofsky, E. W. and Van Zandt, L.L. (1981) Acoustic modes and nonbounded interactions of the double helix. Biopolymers, 20, 833–852.

    Article  Google Scholar 

  • Muto, V. Halding, J. Christiansen P. L. and Scott, A. C. (1988) Solitons in DNA. J Biomol Struct and Dyn, 5, 873–874.

    Google Scholar 

  • Muto, V. Scott, A. C. and Christiansen, P. L. (1989). Thermally generated solitons in DNA. Preprint

    Google Scholar 

  • Peyrard, M. and Bishop, A. R. (1989) Statistical mechanics of a nonlinear model for DNA denaturation. Preprint.

    Google Scholar 

  • Prohofsky, E. W. (1988) Solitons hiding in DNA and their possible significance in RNA transcription. Phys Rev B, 38, 1538–1554.

    ADS  Google Scholar 

  • Saenger, W. (1984). Principles of nucleic acid structure, Springer, NewYork.

    Google Scholar 

  • Scott, A. C. (1982a). Dynamics of Davydov solitons. Phys. Rev. B, 26, 578–595.

    ADS  Google Scholar 

  • Scott, A. C. (1982b) The vibrational structure of Davydov soliton. Phys. Script. 35, 651–672.

    Article  ADS  Google Scholar 

  • Scott, A. C. (1985a). Solitons in biological molecules. Comments Moll. Cell. Biophys., 3, 15–37.

    Google Scholar 

  • Scott, A. C. (1985b). Soliton oscillations in DNA, Phys Rev A, 31, 3518–3519.

    Article  MathSciNet  ADS  Google Scholar 

  • Scott, A.C.(1985c). Anharmonic analysis of resonant microwave absorption in DNA, Phys Script, 36, 617–638.

    Article  ADS  Google Scholar 

  • Sobell, H. M. (1984). Kink - antikink bound states in DNA structure, p 172 in Structure of biological molecules and assemblies. Vol. II. F. Jurnak and A. Mc Pherson eds, Wiley, NewYork.

    Google Scholar 

  • Szent-Giörgyi, A. (1941) The study of energy levels in biochemistry. Nature, 148, 157–159.

    Article  ADS  Google Scholar 

  • Takeno, S. and Homma, S. (1987). Kinks and breathers associated with collective sugar puckering in DNA. Prog. Theor. Phys. 77, 548–562.

    Article  MathSciNet  ADS  Google Scholar 

  • Tuszynski, J. A. Paul, R. Chatterjee, R. and Sreenivasan, S.R. (1984). Relationship between Fröhlich an Davydov models of biological order, Phys Rev A, 30, 2666–2675.

    Article  ADS  Google Scholar 

  • Wang, X. Brown, D. W. and Linenberg, K. (1989) Quantum Monte Carlo simulation of the Davydov model. Phys Rev Lett, 1796–1799.

    Google Scholar 

  • Xiao, J. Lin, J. and Zhang, G. (1987). The influence of longitudinal vibration on soliton excitation in DNA double helices, J Phys A, 20, 2425–2432.

    Article  MathSciNet  ADS  Google Scholar 

  • Yomosa, S. (1983). Soliton excitations in deoxyribonucleic acid (DNA) double helices. Phys. Rev. A, 27, 2120–2125.

    Article  MathSciNet  ADS  Google Scholar 

  • Yomosa, S. (1984). Solitary excitations in deoxyribonucleic acid (DNA) double helices. Phys. Rev. A, 30, 474–480.

    Article  ADS  Google Scholar 

  • Zhakarov, V.E. (1972). Collapse of Langmuir waves. Sov. Phys. JETP, 72, 908–919.

    ADS  Google Scholar 

  • Zhang, G. (1987) Soliton excitations in deoxyribonucleic acid (DNA) double helices. Phys. Rev. II, 35, 886–891.

    Article  ADS  Google Scholar 

  • Ziman, J. Electrons and phonons: the theory of transport phenomena in Solids. Clarendon, Oxford, 1980

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Remoissenet, M. (1990). Nonlinear Evolution Equations, Quasi-Solitons and their Experimental Manifestation. In: Conte, R., Boccara, N. (eds) Partially Intergrable Evolution Equations in Physics. NATO ASI Series, vol 310. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0591-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0591-7_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6754-6

  • Online ISBN: 978-94-009-0591-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics