The Homographic Invariance of PDE Painlevé Analysis

  • Robert Conte
Part of the NATO ASI Series book series (ASIC, volume 310)


The whole Painlevé analysis of PDE is shown to be invariant under an arbitrary homographie transformation of the function φ defining the singular manifold.


Partial Differential Equation Nonlinear Partial Differential Equation Darboux Transformation Partial Differential Equation Elementary Invariant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    Weiss, J., Tabor, M. and Carnevale, G (1983) “The Painlevé property for partial differential equation”, J.Math.Phys. 24,522–526MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. [2]
    Conte, R. (1989) “Invariant Painlevé analysis of partial differential equations”, Phys. Lett. A140, 383–390.MathSciNetADSGoogle Scholar
  3. [3]
    Musette, M. (1990) “Painlevé-Darboux transformations in nonlinear partial differential equations” in P.C. Sabatier (ed.), Inverse problems in action, Springer Verlag, Berlin.Google Scholar
  4. [4]
    Drouffe, J.-M. (1986) “AMP reference manual (version 6.6)”, SPhT, Centre d’études nucléaires de Saclay, F-91191 Gif-sur-Yvette Cedex.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Robert Conte
    • 1
  1. 1.Service de physique du solide et de résonance magnétiqueCentre d’études nucléaires de SaclayFrance

Personalised recommendations