Advertisement

Exact Solutions of the Boltzmann Equation

  • H. Cornille
Part of the NATO ASI Series book series (ASIC, volume 310)

Abstract

We review the exact solutions of the discrete and continuous Boltzmann Equations.

For the discrete B.E. the velocity \( {\vec V} \) can only take discrete values \( {{\vec V}_i} \). The discrete models equations are nonlinear but they include the linear conservation laws. The simplest solutions are the exponential similarity shock waves and the solutions found in 1+1, 2+1, 2D, 3D dimensions are sums of similarity waves. For a well-defined class of (1+1)-dimensional rational functions it is proved that they are the only possible solutions if two linear conservation laws are present. Different solutions are presented: with nonuniform Maxwellians, shock wave with or without specular reflection, periodic, semiperiodic.

The conservation laws being not directly included into the nonlinear continuous B.E. the exact solutions are different. For the Kac model we construct the even velocity BKW (Bobylev-Krook-Wu) solution, its odd velocity partner and an inhomogeneous solution, while for the homogeneous B.E. we derive the BKW solution. For the inhomogeneous B.E. a time-dependent harmonic potential, which vanishes at infinite time, is introduced, but the equilibrium state is an absolute Maxwellian. This is the only known exact inhomogeneous example relaxing toward the true equilibrium state and not toward the trivial vacuum state

Keywords

Arbitrary Parameter Dimensional Solution Similarity Wave Inhomogeneous Solution Hypercubic Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grad H. “Handbuch der Physik” Springer-Verlag, Berlin 1958Google Scholar
  2. Harris S. “Introduction to the Theory of the B.E.” Holt, Rinehart and Winston, Inc 1971Google Scholar
  3. Truesdell C. and Muncaster R.G. “Fundamentals of Maxwell’s Kinetic Theory” Academic Press, New York 1980Google Scholar
  4. Cercignani C. “Theory and application of the B.E.”, Scottish Academic Press, Edinburgh and London 1975Google Scholar
  5. Cercignani C “Lecture Notes in Physics” 35, 1975, Lanford OE, p.1Google Scholar
  6. Cercignani C Studies in Statistical Mechanics Vol.X, “The B.E.”, 1983, Editors Montroll E.W. and Lebowitz J.L.Google Scholar
  7. Hoare M.R. “Advances in Chemical Physics” LVI, Ed. Prigogine and Rice, p.2, 1984Google Scholar
  8. The more recent and complete monograph on the homogeneous B.E. with Maxwell molecules is due to Bobylev S. Sov. Sci. Rev. C - Math. Phys. Vol.7, 1988.Google Scholar
  9. Broadwell J.E., Phys. Fluids 7, 1243, 1964ADSzbMATHCrossRefGoogle Scholar
  10. Harris S., Phys. Fluids 9, 1328, 1966ADSCrossRefGoogle Scholar
  11. Hardy J. and Pomeau Y., J.M.P. 13, 1042, 1972Google Scholar
  12. McKean H., Comm. Pure Appl. Math. 28, 435, 1975MathSciNetCrossRefGoogle Scholar
  13. Gatignol R., “Lecture Notes in Physics” 36, 1975Google Scholar
  14. Tartar L., Seminaire Goulaouic-Schwartz, 1975–1976Google Scholar
  15. Cabannes M., J. Méc. Théor. Appl. 17, 1, 1978MathSciNetzbMATHGoogle Scholar
  16. Cabannes M., Mech. Res. Comm. 10, 317, 1983zbMATHCrossRefGoogle Scholar
  17. Illner R., Math. Math. Appl. Sci. 1, 187, 1979MathSciNetzbMATHCrossRefGoogle Scholar
  18. Illner R., Trans. Theo. Stat. Phys. 13, 431, 1984MathSciNetzbMATHCrossRefGoogle Scholar
  19. Beale T., Com. Math. Phys. 102, 217, 1985MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. Ruijqrook Th. and Wu T.T., Physica A113, 401 (1982)ADSGoogle Scholar
  21. Frisch U., D’Humières O., Hasslacher B., Lallemand P., Pomeau Y., Rivet J.P. Complex Systems 1, 649, 1987MathSciNetzbMATHGoogle Scholar
  22. Platkowski T. and Illner R., SIAM Review 30, 213, 1988MathSciNetzbMATHCrossRefGoogle Scholar
  23. Cercignani C., Illner R., Shinbrot M„ Comm. Math. Phys. 114, 687, 1988 with references to the Broadwell modelMathSciNetADSzbMATHCrossRefGoogle Scholar
  24. Longo E. and Monaco R., Proceed XVI Rar. Gas Dynam. Pasadena 1988Google Scholar
  25. Piechor K., Arch. Mechan. 4, 1988Google Scholar
  26. d’Humières D. “Bibliography on Lattice Gas and Related Topics”, to appear in the proceedings of the Les Houches workshop, February-March 1989.Google Scholar
  27. Kolodner I., Ann. Math. Pure Appl. 63, 11, 1963MathSciNetzbMATHCrossRefGoogle Scholar
  28. Broadwell J.E., Phys. Fluids 7, 1243, 1964ADSzbMATHCrossRefGoogle Scholar
  29. Wick J. Math. Meth. Appl. Sci., 6, 515, 1984MathSciNetzbMATHCrossRefGoogle Scholar
  30. Platkowski T., J. Méc. Théor. Appl. 4, 555, 1985MathSciNetzbMATHGoogle Scholar
  31. Dukek G. and Nonnenmacher T.F., Physica A135, 167, 1986MathSciNetADSGoogle Scholar
  32. Cornille H., J.M.P. 28, 1567, 1987MathSciNetzbMATHCrossRefGoogle Scholar
  33. Cornille H., J. Phys. A20, 1973, 1987MathSciNetADSGoogle Scholar
  34. Cornille H., J. Stat. Phys. 48, 789, 1987MathSciNetADSzbMATHCrossRefGoogle Scholar
  35. Cornille H., “Lecture Notes in Mathematics” Springer-Verlag Ed.Google Scholar
  36. Toscani G., Let. Mat. Phys. 1989Google Scholar
  37. Zanette D., Physica A153, 612, 1988MathSciNetADSGoogle Scholar
  38. “Discrete Kinetic Theory, Lattice Gas,…” Ed. Monaco R. World Scientific, Singapore Publishing 1989, Boffi V., Dukek G. and Spiga G., p.315, Platkowski T., p.248.Google Scholar
  39. For the Carleman model: Bobylev A.V., Math. Congress Warsaw 1983 (Book Abstract B29)Google Scholar
  40. Wick J. Math. Methods Appl. Sci. 6, 515, 1984MathSciNetADSzbMATHCrossRefGoogle Scholar
  41. a result due to K. Piechor is quoted in Platkowski T. Méc. Théo Appl. 4, 555, 1985MathSciNetzbMATHGoogle Scholar
  42. For the Illner model and other models with more than 2Vi: Cornille H., J.M.P. 28, 1567, 1987MathSciNetzbMATHCrossRefGoogle Scholar
  43. Cornille H., J. Phys. A20, 1973, 1987MathSciNetADSGoogle Scholar
  44. Cornille H., Phys. Lett. A125, 253, 1987MathSciNetADSGoogle Scholar
  45. Cornille H., J.Stat. Phys. 48, 7, 89, 1987MathSciNetGoogle Scholar
  46. Cornille H., CRAS 304, 1091, 1987MathSciNetGoogle Scholar
  47. Cornille H.,“Inverse Problems” Ed. Sabatier PC p.481, World Scientific 1987Google Scholar
  48. Cornille H., J.M.P. 29, 1667, 1988MathSciNetzbMATHCrossRefGoogle Scholar
  49. Cornille H., Let. Math. Phys. 16, 245, 1988MathSciNetADSzbMATHCrossRefGoogle Scholar
  50. Cabannes H. and Tiem D.H., CRAS 304, 29, 1987zbMATHGoogle Scholar
  51. Cabannes H. and Tiem D.H., Complex Systems 1, 574, 1987.Google Scholar
  52. Cornille H., J.M.P. 28, 1567, 1987 (with a result obtained in collaboration with T.T. Wu in Appendix)MathSciNetzbMATHCrossRefGoogle Scholar
  53. Cornille H., J. Stat. Phys. 48, 789, 1987MathSciNetADSzbMATHCrossRefGoogle Scholar
  54. Cornille H., “Mathematical Aspects of Fluids and Plasma Dynamics”, Lecture Notes in Mathematics, Springer-Verlag, Ed. Toscani G., 1989Google Scholar
  55. Cornille H., Book in honor of A. Martin, Ed. Sciulli, Springer, 1990.Google Scholar
  56. Cornille H., J. Phys. A20, L1063, 1987MathSciNetADSGoogle Scholar
  57. Cornille H., J. Stat. Phys. 52, 897, 1988MathSciNetADSzbMATHCrossRefGoogle Scholar
  58. Cornille H., “Topics on Inverse Problems” Ed. Sabatier PC. World Scientific, Singapore 1988, p.101Google Scholar
  59. Cornille H., J.M.P. 30, 789, 1989MathSciNetzbMATHCrossRefGoogle Scholar
  60. Cornille H., TTSP, 18, 33, 1989MathSciNetADSzbMATHGoogle Scholar
  61. Cornille H., XVI Int. Sympos. Rarefied Gas Dynamics, Prog. Astron. Aeron. Ed. Muntz vol.118, AIAA p.131, 1989Google Scholar
  62. “Kinetic Théory, Lattice Gas…” Ed. Monaco World Scientific, Singapore 1989, p.83zbMATHGoogle Scholar
  63. Cornille H., J. Phys. A22, 4787, 1989.MathSciNetADSGoogle Scholar
  64. Kac M., “Fundation of Kinetic Théory”, 3rd Berkeley Symp. on Math. Stat, and Prob. vol. III, 1956Google Scholar
  65. Uhlenbeck G.L. and Ford C.W. “Lectures in Statistical Méchanics”, Ed. Kac M., Am. Math. Soc. Providence p.99, 1963Google Scholar
  66. Henin F., Bul. Ac. Roy Bel. LX, 721, 1974MathSciNetGoogle Scholar
  67. Ernst M., Phys. Lett. A61, 320, 1979MathSciNetGoogle Scholar
  68. Cornille H., J.Phys. A17, L234, 2355, 1984MathSciNetADSGoogle Scholar
  69. Cornille H., JMP 26, 1203, 1985MathSciNetADSzbMATHCrossRefGoogle Scholar
  70. Cornille H., J.Phys. A18, 1209, 1985MathSciNetADSGoogle Scholar
  71. Cornille H., TTSP 16, 795, 1987.MathSciNetADSzbMATHGoogle Scholar
  72. Bobylev V., Sov. Phys. Dokl. 20, 823, 1976ADSGoogle Scholar
  73. Bobylev V., Théor. Mat. Phys., 8, 279, 1984Google Scholar
  74. Bobylev V., and the recent monograph Sov. Sci. Rev. C. Math. Phys. 7, 111, 1988MathSciNetGoogle Scholar
  75. Krook M. and Wu T.T., Phys. Rev. Lett. 16, 1107, 1976ADSCrossRefGoogle Scholar
  76. Ernst M., Phys. Lett. A61, 320, 1979MathSciNetGoogle Scholar
  77. For the NLPDE associated to the BE: Krook M. and Wu T.T. Phys. Fluids 20, 1989, 1979, (eq. (3.1))Google Scholar
  78. Cornille H. and Gervois A., Phys. Lett. 83A, 251, 1981MathSciNetADSGoogle Scholar
  79. Ernst M. and Hendriks E.M. Phys. Lett. 81A, 371, 1981, (eq. (3.10))MathSciNetADSGoogle Scholar
  80. Cornille H., J. Stat. Phys. 45, 611, 1986MathSciNetADSCrossRefGoogle Scholar
  81. For a class of NLPDE sharing common properties with B.E.: Cornille H. and Gervois A., Physica 6D, 29, 1982MathSciNetADSGoogle Scholar
  82. Cornille H., Phys. Let. A91, 211, 1982MathSciNetADSCrossRefGoogle Scholar
  83. Cornille H., J. Phys. A15, L529, 1982MathSciNetADSGoogle Scholar
  84. Cornille H., JMP 25, 1335, 1984MathSciNetADSzbMATHCrossRefGoogle Scholar
  85. For the “nonisotropic BE” see Hendriks E.M. and Nieuwenhuizen T.M., J. Stat. Phys. 29, 591, 1982MathSciNetADSCrossRefGoogle Scholar
  86. for the “extended BE” see Spiga G., ASMF, Univ. Modena 36, 355, 1988MathSciNetzbMATHGoogle Scholar
  87. Dukek G. and Spiga G., ZAMP, 39, 924, 1988,…MathSciNetADSzbMATHCrossRefGoogle Scholar
  88. Boltzmann L. “Wissenschaptlich Abhandlunger” Edt. Hasenorl F., Leipzig Vol.II, p.83, 1909Google Scholar
  89. Nikolskii A., Sov. Phys. Dokl. 8, 633, 1964ADSGoogle Scholar
  90. Bobylev V., Sov. Phys. Dokl. 20, 823, 1976ADSGoogle Scholar
  91. Muncaster R.C., Arch. Rat. Méch. Anal. 70, 115, 1979MathSciNetGoogle Scholar
  92. Cornille H., J. Phys. A18, L839, 1985MathSciNetADSGoogle Scholar
  93. Cornille H., JMP 27, 1373, 1986MathSciNetADSzbMATHCrossRefGoogle Scholar
  94. Cornille H., J. Stat. Phys. 45, 611 (1986)MathSciNetADSCrossRefGoogle Scholar
  95. Cornille H., TTSP 16, 155, 1987.MathSciNetADSzbMATHGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • H. Cornille
    • 1
  1. 1.Service de Physique Théorique de SaclayLaboratoire de l’Institut de Recherche Fondamentaledu Commissariat à l’Energie AtomiqueGif-sur-Yvette CedexFrance

Personalised recommendations