Hirota’s Bilinear Method and Partial Integrability

  • J. Hietarinta
Part of the NATO ASI Series book series (ASIC, volume 310)

Abstract

We discuss Hirota’s bilinear method from the point of view of partial integrability. Many different levels of integrability are shown to exist.

Keywords

Dispersion Relation Bilinear Form Soliton Solution Nonlinear Evolution Equation Vacuum Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Hirota, Phys. Rev. Lett. 27, 1192 (1971).ADSMATHCrossRefGoogle Scholar
  2. [2]
    R. Hirota, in:Backlund Transformations, the Inverse Scattering Method, and Their Applications, ed R.M. Miura, p. 40. Springer-Verlag, Berlin, (1976).CrossRefGoogle Scholar
  3. [3]
    R. Hirota, in:Solitons, eds R.K. Bullough and P.J. Caudrey, p. 157. Springer-Verlag, Berlin (1980).Google Scholar
  4. [4]
    J. Hietarinta, J. Math. Phys. 28, 1732 (1987).MathSciNetADSMATHCrossRefGoogle Scholar
  5. [5]
    J. Hietarinta, J. Math. Phys. 28, 2094 (1987).MathSciNetADSMATHCrossRefGoogle Scholar
  6. [6]
    J. Hietarinta, J. Math. Phys. 28, 2586 (1987).MathSciNetADSMATHCrossRefGoogle Scholar
  7. [7]
    J. Hietarinta, J. Math. Phys. 29, 628 (1988).MathSciNetADSMATHCrossRefGoogle Scholar
  8. [8]
    J. Hietarinta, work in progress (1989).Google Scholar
  9. [9]
    R. Hirota and J. Satsuma, Suppl. Prog. Theor. Phys. 59, 64 (1976).MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    R. Hirota, J. Phys. Soc. Jpn. 33, 1456 (1972).ADSCrossRefGoogle Scholar
  11. [11]
    R. Hirota, J. Math. Phys. 14, 805 (1973).MathSciNetADSMATHCrossRefGoogle Scholar
  12. [12]
    R. Hirota, J. Phys. Soc. Jpn. 51, 323 (1982).MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    R. Hirota and J. Satsuma, J. Phys. Soc. Jpn. 40, 611 (1976).MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    J. Satsuma and D.J. Kaup, J. Phys. Soc. Jpn. 43, 692 (1977).MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    M. Jimbo, and T. Miwa, Publ. RIMS, Kyoto Univ. 19, 943 (1983).MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    R. Hirota, J. Phys. Soc. Jpn. 33, 1459 (1972).ADSCrossRefGoogle Scholar
  17. [17]
    R. Hirota, Prog. Theor. Phys. 52, 1498 (1974).ADSMATHCrossRefGoogle Scholar
  18. [18]
    P.J. Caudrey, in Nonlinear Equations in Physics and Mathematics, ed. A.O. Barut, p. 177. Reidel, Dordrecht (1978).Google Scholar
  19. [19]
    F. Lambert and R. Wilcox, these proceedings.Google Scholar
  20. [20]
    M. Kruskal and J. Hietarinta, work in progressGoogle Scholar
  21. [21]
    J.D. Gibbon, P. Radmore, M. Tabor and D. Wood, Stud. Appl. Math. 72, 39 (1985);MathSciNetMATHGoogle Scholar
  22. A.C. Newell, M. Tabor and Y.B. Zeng, Physica 29D, 1 (1987).MathSciNetADSGoogle Scholar
  23. [22]
    K. Nozaki and N. Bekki, J. Phys. Soc. Jpn. 53, 1581 (1984);MathSciNetADSCrossRefGoogle Scholar
  24. R. Hirota, in Dynamical Problems in Soliton Systems, ed. S. Takeno, p. 42. Springer-Verlag (1985).Google Scholar
  25. [23]
    R. Hirota and M. Ito, J. Phys. Soc. Jpn. 52, 744 (1983).MathSciNetADSCrossRefGoogle Scholar
  26. [24]
    A.C. Hearn, REDUCE User’s Manual Version 3.2, Publ. CP78, Rev 4/85. Rand, Santa Monica (1985).Google Scholar
  27. [25]
    J. Satsuma, J. Phys. Soc. Jpn. 40, 286 (1976).MathSciNetADSCrossRefGoogle Scholar
  28. [26]
    M. Ito, J. Phys. Soc. Jpn. 49, 771 (1980).ADSCrossRefGoogle Scholar
  29. [27]
    A. Ramani, in Fourth International Conference on Collective Phenomena, ed. J. Lebowitz, p. 54. New York Academy of Sciences, New York (1981).Google Scholar
  30. [28]
    A.C. Newell and Z. Yungbo, J. Math. Phys. 27, 2016 (1986).MathSciNetADSMATHCrossRefGoogle Scholar
  31. [29]
    J. Hietarinta, B. Grammaticos and A. Ramani, work in progress.Google Scholar
  32. [30]
    R. Hirota, J. Phys. Soc. Jpn. 35, 1566 (1973);ADSCrossRefGoogle Scholar
  33. K. Kobayashi and M. Izutzu, J. Phys. Soc. Jpn. 41, 1091 (1976).ADSCrossRefGoogle Scholar
  34. [31]
    J. Hietarinta, in Nonlinear Evolution Equations: Integrability and Spectral Methods, eds. A. Degasperis and A.P. Fordy, Manchester University Press (1989).Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • J. Hietarinta
    • 1
  1. 1.Department of Physical SciencesUniversity of TurkuTurkuFinland

Personalised recommendations