Bäcklund Transformations and the Painlevé property

  • John Weiss
Part of the NATO ASI Series book series (ASIC, volume 310)


For systems with the Painlevé Property, Bäcklund transformations can be defined. These appear as specializations (truncations) of certain expansions of the solution about its singular manifold. With reference to the Lax pair for a system, the Bäcklund transformations are equivalent to transformations of linear systems developed by Darboux (Bäcklund-Darboux transformations).

For specific systems the Bäcklund-Darboux transformations lead to a reformulation of these systems in terms of the Schwarzian derivative. We find the Bäcklund transformations of these systems and study their periodic fixed points.

The periodic fixed points of the Bäcklund transformations determine a finite dimensional invariant manifold for the flow of the system. The resulting (ordinary) differential equations have a hamiltonian structure and the flow of the (partial) differential system is represented by commuting flows on the finite dimensional manifold.


Hamiltonian Structure Toda Lattice Schwarzian Derivative Singular Manifold Backlund Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Kowalevskaya, Acta Mathematica 14 (1890), 81.MathSciNetCrossRefGoogle Scholar
  2. 2.
    E.L. Ince, “Ordinary Differential Equations”, Dover, New York, 1956.Google Scholar
  3. 3.
    M.J Ablowitz, A. Ramani and H. Segur,, J. Math. Phys. 21 (1981), 715–721.MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    J.B. McLeod and P.J. Olver, SIAM J. Math. Anal. 14 (1983), 488–506.MathSciNetzbMATHGoogle Scholar
  5. 5.
    W.F. Osgood, “Topics in the Theory of Functions of Several Complex Variables”, Dover, New York, 1966.zbMATHGoogle Scholar
  6. 6.
    J. Weiss, M. Tabor and G. Carnevale, J. Math. Phys. 24 (1983), 522–526.MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    E. Hille, “Ordinary Differential Equations in the Complex Domain”, John Wiley, New York, 1976.zbMATHGoogle Scholar
  8. 8.
    J. Weiss, J. Math. Phys. 24 (1983), 1405–1413.MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    J. Weiss, J. Math. Phys. 25(1984), 13–24.MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    J. Weiss, J. Math. Phys. 26 (1985), 258–269.MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    J. Weiss, J. Math. Phys. 25 (1984), 2226–2235.MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    R.S. Ward, Phys. Lett. 102A (1984), 279–282.ADSGoogle Scholar
  13. 13.
    R.S. Ward, Phil. Trans. R. Soc. Lond. A 315 (1985), 451–457.ADSzbMATHCrossRefGoogle Scholar
  14. 14.
    R. Courant and D. Hilbert, “Methods of Mathematical Physics”, Interscience, New York, 1962.zbMATHGoogle Scholar
  15. 15.
    E.V. Doktorov and S. Yu. Sakovich, J. Phys. A 18 (1985), 3327–3334.MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 16.
    P.A. Clarkson, Phys. Lett. 109A (1985), 205–208.ADSGoogle Scholar
  17. 17.
    P.A. Clarkson, Physica 18D (1986), 209–210.MathSciNetADSGoogle Scholar
  18. 18.
    Willy Hereman, private communication.Google Scholar
  19. 19.
    M. Lavie, Canadian J. Math. 21 (1969), 235.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    G. Darboux, “Théorie Générale des Surfaces, II”, Chelsea, New York, 1972.Google Scholar
  21. 21.
    P. Deift and E. Trubowitz, Comm. Pure Appl. Math. 32 (1979), 121–151.MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    J. Weiss, Phys. Lett. 102A (1984), 329–331.ADSGoogle Scholar
  23. 23.
    J. Weiss, Phys. Lett. 105A (1984), 387–389.ADSGoogle Scholar
  24. 24.
    J. Weiss, J. Math. Phys. 27 (1986), 1293–1305.MathSciNetADSzbMATHCrossRefGoogle Scholar
  25. 25.
    M.J. Ablowitz and H. Segur, “Solitons and the Inverse Scattering Transformation”, SIAM, Philadelphia, 1981.Google Scholar
  26. 26.
    B. Gaffet, Physica 26D (1987), 123–139.MathSciNetADSGoogle Scholar
  27. 27.
    B. Gaffet, J. Phys. A 21 (1988), 2491–2531.MathSciNetADSzbMATHCrossRefGoogle Scholar
  28. 28.
    A.C. Newell, M. Tabor and Y.B. Zeng, Physica 29D (1987), 1–68.MathSciNetADSGoogle Scholar
  29. 29.
    J.D. Gibbon, A.C. Newell, M. Tabor and Y.B. Zeng, Nonlinearity 1 (1988), 481–490.MathSciNetADSzbMATHCrossRefGoogle Scholar
  30. 30.
    R. Conte, Phys. Lett. 134A (1988), 100–104; Phys. Lett. 140A (1989), 383–390.MathSciNetADSGoogle Scholar
  31. 31.
    George Wilson, Phys. Lett. 132A (1988), 445–450.ADSGoogle Scholar
  32. 32.
    J. Weiss, J. Math. Phys. 27 (1986), 2647–2656.MathSciNetADSzbMATHCrossRefGoogle Scholar
  33. 33.
    P. Davis, “Circulant Matrices”, Wiley, New York, 1983.Google Scholar
  34. 34.
    J. Weiss, J. Math. Phys. 28 (1987), 2025–2039.MathSciNetADSzbMATHCrossRefGoogle Scholar
  35. 35.
    D. Hilbert and S. Cohn-Vossen, “Geometry and the Imagination”, Chelsea, New York, 1952.zbMATHGoogle Scholar
  36. 36.
    J. Weiss, Phys. Lett. 137A (1989), 365–368.ADSGoogle Scholar
  37. 37.
    J. Weiss, work in progress.Google Scholar
  38. 38.
    A.P. Fordy and J. Gibbons, Commun. Math. Phys. 77 (1980), 21–30MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Kluwer Acadamic 1990

Authors and Affiliations

  • John Weiss
    • 1
  1. 1.ArlingtonUSA

Personalised recommendations