Skip to main content

How Important is Photosynthesis in Micropropagation?

  • Chapter
The Impact of Biotechnology on Agriculture

Part of the book series: Current Plant Science and Biotechnology in Agriculture ((PSBA,volume 8))

Abstract

When micropropagating plants it is not always required that the final product in vitro is autotrophic. On the contrary, micropropagated roses with the lowest net photosynthesis yielded the best survival rate in the greenhouse, provided the culture conditions in the last stage of micropropagation were adequate. Sugar content, light intensity and controlled water retention capacity in the head space of the container are the most important factors. They can contribute to yield plants with a normal anatomy and physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aoki, S., Oda, M. (1988) ‘Sensing of photosynthetic capacities of seedlings of lettuce with chlorophyll fluorescence’, Acta Hort. 230, 363 – 370.

    Google Scholar 

  • Capellades, M. (1989) ‘Histological and ecophysiological study of the changes occurring during the acclimatization of in vitro cultured roses’, PhD dissertation, State University of Gent, Belgium, 98 pp.

    Google Scholar 

  • Capellades, M., Garulla, C., Fontarnau, R. & Debergh, P. (1989) ‘The effect of environment on anatomy of stornata and epidermal cells in tissue cultured Rosa multiflora’, J. Amer. Soc. Hort. Sc., accepted for publication.

    Google Scholar 

  • Capellades, M., Lemeur, R. & Debergh, P. (1989) ‘Effects of sugar content in the culture medium on starch accumulation in the chloroplasts and photosynthesis rate of tissue cultured roses’, Phys. Plant., submitted for publication.

    Google Scholar 

  • Desjardins, Y., Laforge, F., Lussier, C. & Gosselin, A., (1988) ‘Effect of CO2 enrichment and high photosynthtic photon flux on the development of autotrophy and growth of tissue-cultured strawberry, raspberry and asparagus plants’, Acta Hort., 230, 45 – 53.

    Google Scholar 

  • Fujiwara, K., Kozai, T. k Watanabe, I., (1987) ‘Fundamental studies on environment in plant tissue culture vessels. 3. Measurements of carbondioxide gas concentration in closed vessels containing tissue cultured plantlets and estimates of net photosynthetic rates of the plantlets’, J. Agr. Met. 43, 21–30.

    Article  Google Scholar 

  • Grout, B.W.W. k Aston, M.J. (1977) ‘Transplanting of cauliflower plants regenerated from meristem culture. I. Water loss and water transfer related to changes in leaf wax and to xylem regeneration’, Hort. Res., 17, 1 – 7.

    Google Scholar 

  • Grout, B.W.W, k Price, F. (1987) ‘The establishment of photosynthetic independence in strawberry cultures prior to transplanting’, in G. Ducaté, Jacobs, M. k Simeon, A. (Eds.), Proc. Symp. Florizel 87, Plant Micropropagation in horticultural industries, Arlon, Belgium, pp. 55–60.

    Google Scholar 

  • Grout, B.W.W. k Donkin, M.E. (1987) ‘Photosynthetic activity of cauli¬flower meristem cultures in vitro and at transplanting time’, Acta Hort., 212, 323–327.

    Google Scholar 

  • Kautsky, H. k Franck, V. (1943) ‘Chlorophyll Fluoreszenz und Koh lensâureassimilàtion’, Biocem. Z., 315, 139–232.

    CAS  Google Scholar 

  • Kozai, T., Iwanami, Y. k Fujiwara, F. (1987) ‘Environment control for masspropagation of tissue cultured plantlets. I. Effects of CO2 enrichment on the plant growth during the multiplication stage’, J. Agr. Met. 4, 22–26.

    Google Scholar 

  • Kozai, T., Fujiwara, K. k Watanabe, I. (1986) ‘Fundamental studies on environments in plant tissue culture vessels. 2. Effects of stoppers and vessels on gas exchange rates between inside and outside of vessels closed with stoppers’, J. Agr. Met. 42, 119–127.

    Article  Google Scholar 

  • Langford, P.J. k Wainwright, H. (1987) ‘Influence of sucrose con-centration on the photosynthetic ability of in vitro grown rose shoots’, Acta Horticulturae, 22, 305–308.

    Google Scholar 

  • Maene, L.J., (1985) Optimalisering van de overgang van weefsel- teeltplantjes naar in vivo omstandigheden’, PhD-thesis, State University Gent, Belgium, pp. 221.

    Google Scholar 

  • Pinto Contreras, M. & Gaudillere, J.P. (1986) Plant Physiol. Biochem., 25 (1), 35–42.

    Google Scholar 

  • Vanderschaeghe, A. & Debergh, P., (1987) ‘Technical aspects of the control af the relative humidity in tissue culture containers’, Med. Fac. Landbouww. Rijksuniv. Gent, 52(4), 1429–1437.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Capellades, M., Vanderschaeghe, A., Lemeur, R., Debergh, P. (1990). How Important is Photosynthesis in Micropropagation?. In: Sangwan, R.S., Sangwan-Norreel, B.S. (eds) The Impact of Biotechnology on Agriculture. Current Plant Science and Biotechnology in Agriculture, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0587-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0587-0_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6752-2

  • Online ISBN: 978-94-009-0587-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics