Genetic Transformation and Plant Improvement

  • R. S. Sangwan
  • B. S. Sangwan-Norreel
Part of the Current Plant Science and Biotechnology in Agriculture book series (PSBA, volume 8)


During the past three decades “green revolution” has resulted in considerable increases in crop productivity in the developing countries. The increased crop yields have been achieved through a combination of genetic improvements of cultivars and advances in agricultural technology and management. Although, genetic improvement of crops began with the domestication of plants, it was not till 1886, when Mendelian laws of inheritance provided a scientific basis of crop improvement. The procedures of sexual gene transfer and recombination, a prerequisite for improving cultivars were developed several years after the rediscovery of Mendelian laws of heredity.


Plant Cell Transgenic Plant Gene Transfer Selectable Marker Agrobacterium Tumefaciens 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Abdullah, R., Cocking, E.C., Thompson, J.A. 1986. Efficient plant regeneration from rice protoplasts through somatic embryogenesis. Biotechnology,4: 1087 – 1090.CrossRefGoogle Scholar
  2. 2.
    Allard, R.W. 1969. Principles of plant breeding. Wiley, New York,Google Scholar
  3. 3.
    Aly, M.A.M., Owens, L.D. 1987. A simple system for plant cell microinjection and culture. Plant Cell Tissue Organ Cult.,10: 159 – 174.CrossRefGoogle Scholar
  4. 4.
    An, G. 1985. High efficiency transformation of cultured tobacco cells. Plant Physiol.,79: 568 – 570.PubMedCrossRefGoogle Scholar
  5. 5.
    An, G., Watson, B.D., Chiang, C.C. 1986. Transformation of tobacco, potato andArabidopsis thalianausing a binary Ti vector system. Plant Physiol.81: 301 – 305.PubMedCrossRefGoogle Scholar
  6. 6.
    Baldes, R., Moos, M., Geider, K. 1987. Transformation of soybean protoplasts from permanent suspension cultures by cocultivation with cells ofAgrobacterium tumefaciens. Plant Mol. Biol.,9: 135 – 145.CrossRefGoogle Scholar
  7. 7.
    Basiran, N., Armitage, P., Scott, R.J. Draper, J. 1987. Genetic transformation of flax (Linum usitatissimum) byAgrobacterium tumefaciens: regeneration of transformed shoots via a callus phase. Plant Cell Rep.,6: 396 – 399.CrossRefGoogle Scholar
  8. 8.
    Bercetche, J., Chriqui, D., Adam, S., David. C. 1987. Morphogenetic and cellular reorientations induced byAgrobacterium rhizogeneson carrot, pea tobacco. Plant Science,52: 195 – 210.CrossRefGoogle Scholar
  9. 9.
    Bevan, M. 1984. BinaryAgrobacteriumvectors for plant transformation. Nucleic Acids Res.,12: 8711 – 8721.PubMedCrossRefGoogle Scholar
  10. 10.
    Bevan, M., Flavell, R.B., Chilton, M.D. 1983. A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature,304: 185 – 187.CrossRefGoogle Scholar
  11. 11.
    Bolton, G.W., Nester, E.W., Gordon, M.P. 1986. Plant phenolic compounds induce expression of theAgrobacterium tumefaciensloci needed for virulence. Science, 232; 983 – 985.PubMedCrossRefGoogle Scholar
  12. 12.
    Brisson, N., Paszkowski, J., Penswick, J.R., Gronenborn, B., Potrykus, I., Hohn, T. 1984. Expression of a bacterial gene in plants by using a viral vector. Nature,310: 511 – 514.CrossRefGoogle Scholar
  13. 13.
    Brisson, N., Hohn, T. 1986. Plant virus vectors: cauliflower mosaic virus. Methods Enzymol.,118: 659 – 668.CrossRefGoogle Scholar
  14. 14.
    Bytebier, B., Deboeck, F., De Greve, H., Van Montagu, M., Hernalsteens, J.P. 1987. T-DNA organization in tumor cultures and transgenic plants of the monocotyledonAsparagus officinalis. Proc. Natl. Acad. Sci., USA,84: 5345 – 5349.PubMedCrossRefGoogle Scholar
  15. 15.
    Caboche, M., Desmayes, A. 1986. Utilisation de liposomes pour la transformation de protoplastes de mésophylle de Tabac par plasmide recombinant deE. colileur conférant la résistance à la kanamycine. C.R. Acad. Sci.,299: 663 – 666.Google Scholar
  16. 16.
    Catlin, D., Ochoa, O., Mc Cormick, S., Quitos, C.F. 1988. Celery transformation byAgrobacterium tumefaciens: cytological and genetic analysis of transgenic plants. Plant Cell Rep.,7: 100 – 103.CrossRefGoogle Scholar
  17. 17.
    Chen, W.H., Gartland, K.M.A., Davey, M.R., Sotak, R., Gartland, J.S. et al. 1987. Transformation of sugarcane protoplasts by direct uptake of a selectable chimaeric gene. Plant Cell Rep.,6: 297 – 301.CrossRefGoogle Scholar
  18. 18.
    Chilton, M.-D., Tepfer, D.A., Petit D.C., Casse-Delbart, F., Tempe, J. 1982.Agrobacterium rhizogenes inserts T-DNA into the genomes of the hostplant cells. Nature,295: 432–434.Google Scholar
  19. 19.
    Christou, P., Murphy, J.E., Swain, W.F. 1987. Stable transformation of soybean by electroporation and root formation from transformed callus. Proc. Natl. Acad. Sci., USA,84: 3962 – 3966.PubMedCrossRefGoogle Scholar
  20. 20.
    Chyi, Y.-S., Phillips, G.C. 1987. High efficiencyAgrobacterium-mediated transformation ofLycopersiconbased on conditions favorables for regeneration. Plant Cell Rep.,6: 105 – 108.Google Scholar
  21. 21.
    Cocking, E.C., Davey, M.R. 1987. Gene transfer in cereals. Science,236: 1259 – 1262.PubMedCrossRefGoogle Scholar
  22. 22.
    Comai, L., Facciotti, D., Hiatt, W.R., Thompson, G., Rose, R.E., Stalker, D.M. 1985. Expression in plants of a mutantaroAgene fromSalmonella typhimuriumconfers tolerance to glyphosate. Nature,317: 741 – 744.CrossRefGoogle Scholar
  23. 23.
    Crossway, A., Oakes, J.V., Irvine, J.M., Ward, B., Knauf, V.C., Shewmaker, L.K. 1986. Integration of foreign DNA following microinjection of tobacco mesophyll protoplasts. Mol. gen. Genet.,202: 179 – 185.CrossRefGoogle Scholar
  24. 24.
    Dahl, G.A., Tempe, J. 1983. Studies on the use of toxic precursor analogues of opines to select transformed plant cells. Theor. Appl. Genet,66: 233 – 239.CrossRefGoogle Scholar
  25. 25.
    Davey, M.R., Cocking, E.C., Freeman, J., Pearce, N., Tudor, I. 1980. Transformation of petunia protoplasts by isolatedAgrobacteriumplasmid. Plant Sci. Lett.,18: 307 – 313.CrossRefGoogle Scholar
  26. 26.
    Deak, M., Kiss, G.B., Koncz, C., Dudits, D. 1986. Transformation of Medicago byAgrobacterium-mediated gene transfer. Plant Cell Rep.,5: 97 – 100.CrossRefGoogle Scholar
  27. 27.
    De Block, M., Herrera-Estrella, L., Van Montagu, M., Schell, J., ZAMBRYSKI, P. 1984. Expression of foreign genes in regenerated plants and in their progeny. EMBOJ.,3: 1681 – 1689.Google Scholar
  28. 28.
    De Block, M., Schell, J., Van Montagu, M. 1985. Chloroplast transformation byAgrobacterium tumefaciens. EMBO J.,4: 1367 – 1372.PubMedGoogle Scholar
  29. 29.
    De Block, M., Bottermann, J., Vandewiele, M., Dockx, J., Thoen, C. et al. 1987. Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J.,6: 2513 – 2518.PubMedGoogle Scholar
  30. 30.
    De Block, M. 1989. Genotype-independent leaf disc transformation of potato (Solanum tuberosum) usingAgrobacterium tumefaciens. Theor. Appl. Genet.,76:767–77A.Google Scholar
  31. 31.
    De Cleene, M., De Ley, J. 1976. The host range of crown gall. Bot. rev.,42: 389 – 466.CrossRefGoogle Scholar
  32. 32.
    De Framond, A.J., Barton, K.A., Chilton, M.D. 1983. Mini-Ti: A new vector strategy for plant genetic engineering. Biotechnology,1: 262 – 269.CrossRefGoogle Scholar
  33. 33.
    De Greve, H., Leemans, J., Hernalsteens, J.-P., Thia-Toong, L., Debeuckeleer, M. et al. 1982. Regeneration of normal and fertile plants that express octopine synthase, from tobacco crown galls after deletion of tumor controlling functions. Nature,300: 752 – 755.CrossRefGoogle Scholar
  34. 34.
    De La Pena, A., Lorz, H., Schell, J. 1987. Transgenic rye plants obtained by injecting DNA into young floral tillers. Nature,325: 274 – 276.CrossRefGoogle Scholar
  35. 35.
    Dellaporta, S.L., Wood, J., Hicks, J.B. 1983. A plant DNA mini-preparation: version II. Plant Mol. Biol. Rep.,1: 19 – 21.CrossRefGoogle Scholar
  36. 36.
    Depicker, A., Herman, L., Jacobs, A., Schell, J., Van Montagu, M. 1985. Frequencies of simultaneous transformation with different T-DNAs and their relevance to theAgrobacterium/plant cell interaction. Mol. Gen. Genet.,201: 477 – 484.CrossRefGoogle Scholar
  37. 37.
    Deshayes, A., Herrera-Estrella, L., Caboche, M. 1985. Liposome-mediated transformation of tobacco mesophyll protoplasts by anEscherichia coliplasmid. EMBO J.,4: 2731 – 2737.PubMedGoogle Scholar
  38. 38.
    Eichholtz, D.A., Rogers, S.G., Horsch, R.B., Klee, H.J., Hayford, M., et al. 1987. Expression of mouse dihydrofolate reductase gene confers methotrexate resistance in transgenic petunia plants. Somat. Cell Mol. Genet.,13: 67 – 76.PubMedCrossRefGoogle Scholar
  39. 39.
    Facciotti, D., O’Neal, J.K., Lee, S., Shewmaker, C.K. 1985. Light-inducible expression of a chimeric gene in soybean tissue transformed withAgrobacterium. Biotechnology,3: 241 – 246.CrossRefGoogle Scholar
  40. 40.
    Fedoroff, N. 1983. In mobile genetic elements. J.A. Shapiro Ed. ( Academic Press, New York ), pp 1 – 63.Google Scholar
  41. 41.
    Feldmann, K.A., Marks, M.D. 1987.Agrobacterium-mediated transformation of germinating seeds ofArabidopsis thaliana: a non-tissue culture approach. Mol. Gen. Genet.,208: 1–9.Google Scholar
  42. 42.
    Fillatti, J.J., Kiser, J., Rose, R., Comai, L. 1987. Efficient transfer of a glyphosate tolerance gene into tomato using a binaryAgrobacterium tumefaciensvector. Biotechnology,5: 726 – 730.CrossRefGoogle Scholar
  43. 43.
    Fillatti, J.J., Sellmer, J., Mccown, B., Haissig, B., Comai, L. 1987.Agrobacterium-mediated transformation and regeneration ofPopulus. Mol., Gen. Genet.,206: 192–199.Google Scholar
  44. 44.
    Fraley, R.T., Rogers, S.G., Horsch, R.B., Sanders, P.R., Flick, J.S., et al. 1983. Expression of bacterial genes in plant cells. Proc. Natl. Acad. Sci., USA,80: 4803 – 4807.PubMedCrossRefGoogle Scholar
  45. 45.
    Fraley, R.T., Rogers, S.G., Horsch, R.B. 1986. Genetic transformation in higher plants. CRC Critical Rev. Plant Sci.,4: 1 – 46.CrossRefGoogle Scholar
  46. 46.
    Fromm, M., Taylor, L.P., Walbot, V. 1985. Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc. Natl. Acad. Sci. USA,82: 5824 – 5828.PubMedCrossRefGoogle Scholar
  47. 47.
    Fromm, M., Taylor, L.P., Walbot, V. 1986. Stable transformation of maize after gene transfer by electroporation. Nature,319: 791 – 793.PubMedCrossRefGoogle Scholar
  48. 48.
    Fry, J., Barnason, A., Horsch, R.B. 1987. Transformation ofBrassica napuswithAgrobacterium tumefaciensbased vectors. Plant Cell Rep.,6: 321 – 325.CrossRefGoogle Scholar
  49. 49.
    Gasser, C.S., Fraley, R.T. 1989. Genetically Engineering plants for crop improvement. Science,244: 1293 – 1299.PubMedCrossRefGoogle Scholar
  50. 50.
    Goodman, R.M., Hauptli, H., Crossway, A., Knauf, V.C. 1987. Gene transfer in crop improvement. Science,236: 48 – 64.PubMedCrossRefGoogle Scholar
  51. 51.
    Gronenborn, B., Gardner, R.C., Schaefer, S., Shepherd, R.J. 1981. Propagation of foreign DNA in plants using cauliflower mosaic virus as a vector. Nature,294: 773 – 776.CrossRefGoogle Scholar
  52. 52.
    Hain, R., Stabel, P., Czernilofsky, A.P., Steinbiss, H.H., Herrera-Estrella, L., Schell, J. 1985. Uptake, integration, expression and genetic transmission of a selectable chimeric gene by plant protoplasts. Mol. Gen. Genet,199: 161 – 168.CrossRefGoogle Scholar
  53. 53.
    Hauptmann, R.M., Ozias-Akins, P., Vasil, V., Tabaeizadeh, Z., Rogers, S.S. et al. 1987. Transient expression of electroporated DNA in monocotyledonous and dicotyledonous species. Plant Cell Rep.,6: 265 – 270.CrossRefGoogle Scholar
  54. 54.
    Helmer, G., Casadaban, M., Bevan, M., Kayes, L., Chilton, M.D. 1984. A new chimeric gene as a marker for plant transformation: the expression ofEscherichia coli ß-galactosidase in sunflower and tobacco cells. Biotechnology,2: 520 – 527.CrossRefGoogle Scholar
  55. 55.
    Hernalsteens, J.P., Thia-Toong, L., Schell, J., Van Montagu, M. 1984. Anagrobacterium-transformed cell culture from the monocotAsparagus officinalis. EMBO J.,3: 3039 – 3041.PubMedGoogle Scholar
  56. 56.
    Herrera-Estrella, L., De Block, M., Messens, E., Hernalsteens, J.P., Van Montagu, M;, Schell, J. 1983. Chimeric genes as dominant selectable markers in plant cells. EMBO J.,2: 987 – 995.PubMedGoogle Scholar
  57. 57.
    Hess, D. 1980. Investigations on the intra-and interspecific transfer of anthocyanin genes using pollen as vectors. Z. Pflanzenphysiol.,98: 321 – 337.Google Scholar
  58. 58.
    Hilder, V.A., Gatehouse, A.M.R., Sheerman, S.E., BARKER, R.F., BOULTER, D. 1987. A novel mechanism of insect resistance engineered into tobacco. Nature,330: 160 – 163.CrossRefGoogle Scholar
  59. 59.
    Hille, J., Verheggen, F., Roelvink, P., Franssen, H., Van Kammen, A., Zabel, P. 1986. Bleomycin resistance: a new dominant selectable marker for plant cell transformation. Plant Mol. Biol.,7: 171 – 176.CrossRefGoogle Scholar
  60. 60.
    Hoekema, A., Hirsch, P.R., Hooykaas, P.J.J., Schilperoot, R.A. 1983. A binary plant vector stategy based on separation of vir- and T-region of theAgrobacterium tumefaciensTi plasmid. Nature,303: 179 – 180.CrossRefGoogle Scholar
  61. 61.
    Hoekema, A., Van Haaren, M., Fellinger, A., Hooykaas, P.J.J., Schilperoot, R.A. 1985. Non-oncogenic plant vectors for use in theAgrobacteriumbinary system. Plant Mol. Biol.,5: 85 – 89.CrossRefGoogle Scholar
  62. 62.
    Horsch, R.B., Fraley, R.T., Rogers, S.G., Sanders, P.R., Lloyd, A., Hoffmann, N. 1984. Inheritance of functional foreign genes in plants. Science,223: 496 – 498.PubMedCrossRefGoogle Scholar
  63. 63.
    Horsch, R.B., Fry, J.E., Hoffmann, N.L., Eichholtz, D., Rogers, S.G., Fraley, R.T. 1985. A simple and general method for transferring genes into plants. Science,227: 1229 – 31.CrossRefGoogle Scholar
  64. 64.
    James, D.J., Passey, A.J., Barbara, D.J., Bevan, M. 1989. Genetic transformation of apple (Malus pumilaMill) using a disarmed Ti-binary vector. Plant Cell Report,7: 658 – 661.Google Scholar
  65. 65.
    Jefferson, R.A., Kavanagh, T.A., Bevan, M.W. 1987. GUS fusions:ß-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J.,6: 3901 – 3907.PubMedGoogle Scholar
  66. 66.
    Jefferson, R.A. 1987. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Reporter,5: 387 – 405.CrossRefGoogle Scholar
  67. 67.
    Jensen, J.S., Marcker, K.A., Otten, L., Schell, J. 1986. Nodule-specific expression of a chimaeric soybean leghemoglobin gene in transgenicLotus corniculatus. Nature,321: 669 – 674.CrossRefGoogle Scholar
  68. 68.
    Jones, J.D.G., Dunsmuir, P., Bedbrook, J. 1985. High level of expression of introduced chimaeric genes in regenerated transformed plants. EMBO J.,4: 2411 – 2418.PubMedGoogle Scholar
  69. 69.
    Jones, J.D.G., Svab, Z., Harper, E.C., Hurwitz, C.D., Maliga, P. 1987. A dominant nuclear streptomycin resistance marker for plant cell transformation. Mol. Gen. Genet.,210: 86 – 91.CrossRefGoogle Scholar
  70. 70.
    Jongsma, M., Kornneef, M., Zabel, P., Hille, J. 1987. Tomato protoplast DNA transformation: physical linkage and recombination of exogenous DNA sequences. Plant Mol. Biol.,8: 383 – 394.CrossRefGoogle Scholar
  71. 71.
    Junker, B., Zimny, J., Luhrs, R., Lorz, H. 1987. Transient expression of chimaeric genes in dividing and non–dividing cereal protoplasts after PEG-induced DNA uptake. Plant Cell Rep.,6: 329 – 332.CrossRefGoogle Scholar
  72. 72.
    Klee, H., Horsch, R., Rogers, S. 1987.Agrobacterium-mediated plant transformation and its further applications to plant biology. Annu. Rev. Plant Physiol.,38: 467–486.Google Scholar
  73. 73.
    Klein, T.M., Wolf, E.D., Wu, R., Sanford, J.C. 1987. High-velocity microprojectiles for delivering nucleic acids into living cells. Nature,327: 70 – 73.CrossRefGoogle Scholar
  74. 74.
    Klein, T.M., Fromm, M.E., Weissinger, A., Tomes, D., Schaaf, S., Sletten, M., SANFORD, J.C. 1988. Transfer of foreign genes into intact maize cells using high-velocity microprojectiles. Proc. Natl. Acad. Sci. USA, In press.Google Scholar
  75. 75.
    Kohler, F., Golz, C., Eapen, S., Kohn, H., Schieder, O. 1987. Stable transformation of moth beanVigna aconitifoliavia direct gene transfer. Plant Cell Rep.,6: 313 – 317.CrossRefGoogle Scholar
  76. 76.
    Koncz, C., Olsson, O., Langridge, W.H.R., Schell, J., Szalay, A.A. 1987. Expression and functional assembly of bacterial luciferase in plants. Proc. Natl. Acad. Sci. USA,84: 131 – 135.PubMedCrossRefGoogle Scholar
  77. 77.
    Krens, F.A., Molendijk, L., Wullems, GJ., Schilperoort, R.A. 1982.In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature,296: 72–74.Google Scholar
  78. 78.
    Kuhlemeir, C., Green, P.J., Chua, N.H. 1987. Regulation of gene expression in higher plants. Ann. Rev. Plant Physiol.,38: 221 – 257.CrossRefGoogle Scholar
  79. 79.
    Lichtenstein, C. 1987. Bacteria conjugate with plants. Nature,328: 108 – 109.CrossRefGoogle Scholar
  80. 80.
    Lloyd, A.M., Barnason, A.R., Rogers, S.G., Byrne, M.C., Fraley, R.T., Horsch, R.B. 1986. Transformation ofArabidopsis thalianawithAgrobacterium tumefaciens. Science,234: 464 – 466.PubMedCrossRefGoogle Scholar
  81. 81.
    Lorz, H., Baker, B., Schell, J. 1985. Gene transfer to cereal cells mediated by protoplast transformation. Mol. Gen. Genet.,199: 178 – 182.CrossRefGoogle Scholar
  82. 82.
    Luo Zhong-Xun, Wu, R. 1988. A simple method for the transformation of riceviathe pollen tube pathway. Plant Molecular Biol. Reporter.,6: 165 – 174.CrossRefGoogle Scholar
  83. 83.
    Lurquin P.F., Kado, C.I. 1977. Mol. Gen. Genet.,154.Google Scholar
  84. 84.
    Maniatis, T., Frisch, E.F., Sambrook, J. 1982. Molecular cloning: A laboratory manual. (Cold Spring Harbor, N.Y: cold spring Harbor Laboratory).Google Scholar
  85. 85.
    Marton, L., Wullems, G.J., Molendijk, L., Schilperoort, R.A. 1979. In vitro transformation of cultured cells fromNicotiana tabacumbyAgrobacterium tumefaciens. Nature,277: 129 – 131.CrossRefGoogle Scholar
  86. 86.
    Matthysse, A.G., Holmes, K.V., Gurlitz, R.H.G. 1982. Binding ofAgrobacterium tumefaciensto carrot protoplasts. Physiol. Plant Pathol.,20: 27 – 33.CrossRefGoogle Scholar
  87. 87.
    Mc Cabe, D.E., Swain, W.F., Martinell, B.J., Christou, P. 1988. Stable transformation of Soybean (Glycine max) by particle acceleration. Bio/Technology,6: 923 – 926.CrossRefGoogle Scholar
  88. 88.
    Mc Donnel, R.E., Clark, R.D., Smith, W.A., Hinchee, M.A. 1987. A simplified method for the detection of neomycin phosphotransferase II activity in transformed plant tissue. Plant Mol. Biol. Report.,5: 380 – 386.CrossRefGoogle Scholar
  89. 89.
    Murai, N., Sutton, D.W., Murray, M.G., Slightom, J.L., Merlo, DJ. et al. 1983. Phaseolin gene from bean is expressed after transfer to sunflower via tumor-inducing plasmid vectors. Science,222: 476 – 482.PubMedCrossRefGoogle Scholar
  90. 90.
    Nagata, I., Okada, K., Takebe, I. 1986. Fallen leaf taked conference onAgrobacteriumand crown gall. Sept. 11–14. Abstract page 19.Google Scholar
  91. 91.
    Neuhaus, G., Spangenberg, G., Mittelsten Scheid, O., Schweiger, H.G. 1987. transgenic rapeseed plants obtained by the microinjection of DNA into microspore-derived embryoids. Theor. Appl. Genet,75: 30–36.Google Scholar
  92. 92.
    Ohta, Y. 1986. High efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA. Proc. Natl. Acad. Sci. USA,83: 715 – 719.PubMedCrossRefGoogle Scholar
  93. 93.
    Ooms, G., Burrell, M.M., Karp, A., Bevan, M., Hille, J. 1987. Genetic transformation in two potato cultivars with t-DNA from disarmedAgrobacterium. Theor. Appl. Genet.,73: 744 – 750.CrossRefGoogle Scholar
  94. 94.
    Ou-Lee, T.-M., Turgeon, R., Wu, R. 1986. Expression of a foreign gene linked to either a plant virus or aDrosophilapromoter, afterelectroporation of protoplasts of rice, wheat and sorghum. Proc. Natl. Acad. Sci. USA,83: 6815 – 6819.PubMedCrossRefGoogle Scholar
  95. 95.
    Ow, D.W., Wood, K.V., Deluca, M., Dewet, J.R., Helinski, D.R., Howell, S.H. 1986. Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science,234: 856 – 859.PubMedCrossRefGoogle Scholar
  96. 96.
    Paszkowski, J., Shillito, R.D., Saul, M., Mandak, V., Hohn, T., et al. 1984. Direct gene transfer to plants. EMBO J.,3: 2717 – 2722.PubMedGoogle Scholar
  97. 97.
    Potrykus, I., Saul, M.W., Petruska, P., Paszkowski, P., Shillito, R.D. 1985. direct gene transfer to cells of a graminaceous monocot. Mol. Gen. Genet.,199: 183–188.Google Scholar
  98. 98.
    Potrykus, I., Paszkowski, J.P., Saul, M.W., Petruska, P., Shillito, R.D. 1985. Molecular and general genetics of a hybrid foreign gene introduced into tobacco by direct gene transfer. Mol. Gen. Genet.,199: 169 – 177.PubMedCrossRefGoogle Scholar
  99. 99.
    Potrykus, I., Shillito, R.D., Saul, M.W., Paszkowski, J.P. 1985. Direct gene transfer. State of the art and furure potential. Plant Mol. Biol. Rep.,3117 – 128.CrossRefGoogle Scholar
  100. 100.
    Powell Abel, P., Nelson, R.S., De, B., Hoffman, N., Rogers, S.G., Fraley, R.T., BEACHY, R.N. 1986. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein. Science,232: 738 – 743.CrossRefGoogle Scholar
  101. 101.
    Reich, T.J., Iyer, V.N., Miki, B.L. 1986. Efficient transformation of alfalfa protoplasts by the intranuclear microinjection of Ti plasmids. Biotechnology,4: 1001 – 1004.CrossRefGoogle Scholar
  102. 102.
    Rhodes, C.A., Pierce, D.A., Metler, I.J., Mascarenhas, D., Detmer, J J. 1988. Genetically transformed maize plants from protoplasts. Sciences,240: 204 – 207.CrossRefGoogle Scholar
  103. 103.
    Riggs, C.D., Bates, G.W. 1986. Stable transformation of tobacco by elctroporation: evidence for plasmid concatenation. Proc. Natl. Acad. Sci. USA,83: 5602 – 5606.PubMedCrossRefGoogle Scholar
  104. 104.
    Sanford, J.C., Klein, T.M., Wolf, E.D., Allen, N. 1987. Particle science Technology,5: 27 – 37.CrossRefGoogle Scholar
  105. 105.
    Schell, J. 1987. Transgenic plants as tools to study the molecular organization of plant genes. Science,237: 1176 – 1183.CrossRefGoogle Scholar
  106. 106.
    Schlumbaum, A., Mauch, F., Vogeli, U., Boller, T. 1986. Plant chitinases are potent inhibitors of fungal growth. Nature,324: 365 – 367.CrossRefGoogle Scholar
  107. 107.
    Scott, R.J., Draper, J. 1987. Transformation of carrot tissues derived from proembryogenic suspension cells: a useful model system for gene expression studies in plants. Plant Mol. Biol.,8: 265 – 274.CrossRefGoogle Scholar
  108. 108.
    Sequeera, L. 1984. Cross protection and induced resistance. Their potential for plant disease control. Trends Biotechnol.,2: 25 – 29.CrossRefGoogle Scholar
  109. 109.
    Shah, D.M., Horsch, R.B., Klee, H.J., Kishore, G.M., Winter, J.A. et al. 1986. Engineering herbicide tolerance in transgenic plants. Science,233: 478 – 481.PubMedCrossRefGoogle Scholar
  110. 110.
    Shaw, C.H., Sanders, D.M., Bates, M.R., Shaw, C.H. 1986. Light regulation of a ssRubisco-nos chimaeric gene: photoregulatory control sequences from a C3 plant function in cells of a CAM plant. Nucleic Acids Res.,14: 6603 – 6612.PubMedCrossRefGoogle Scholar
  111. 111.
    Sheikoleslam, S.N., Weeks, D.P. 1987. Acetosyringone promotes high efficiency transformation ofArabidopsis thalianaexpiants byAgrobacterium tumefaciens. Plant Mol. Biol.,8: 291 – 298.CrossRefGoogle Scholar
  112. 112.
    Shimamoto, K., Terada, R., Izawa, T., Fujimoto, H. 1989. Fertile transgenic rice plants regenerated from transformed protoplasts. Nature,338, 274 – 276.CrossRefGoogle Scholar
  113. 113.
    Simmonds, N.W. 1979. Principles of crop improvement. Longman, London, 339 pp.Google Scholar
  114. 114.
    Simpson, R.B., Spielmann, A., Margossian, L., Mcknight, T.D. 1986. A disarmed binary vector fromAgrobacterium tumefaciensfunction inAgrobacterium rhizogenes. Frequent co-transformation of two distinct T-DNAs. Plant Mol. Biol.,6: 403 – 415.CrossRefGoogle Scholar
  115. 115.
    Southern, E.M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophresis. J. Mol. Biol.,98: 503 – 517.PubMedCrossRefGoogle Scholar
  116. 116.
    Stachel, S.E., Zambryski, P.C. 1986.Agrobacterium tumefaciens and the susceptible plant cell: a novel adaptation of extracellular recognition and DNA conjugation. Cell47: 155–157.Google Scholar
  117. 117.
    Stachel, S.E., Nester, E.W. 1986. The genetic end transcriptional organization of thevirregion of the A6 Ti plasmid ofAgrobacterium tumefaciens. EMBO, J.,7: 27 – 37.Google Scholar
  118. 118.
    Stachel, S.E., Zambryski, P.C. 1989. Generic trans-kingdom Sex. Nature,340: 190 – 191.PubMedCrossRefGoogle Scholar
  119. 119.
    Sukhapinda, K., Spivey, R., Simpson, R.B., Shanin, E.A. 1987. Transgenic tomato (Lycopersicon esculentumL.) transformed with a binary vector inAgrobacterium rhizo genes: nonchiméric origin of callus clone and low copy numbers of integrated vector T-DNA. Mol. Gen. Genet.,206: 491 – 497.CrossRefGoogle Scholar
  120. 120.
    Tempe, J., Petit, A., Holsters, M. Van Montagu, M., Schell, J. 1977. Ther mosensitive step associated with transfer of the Ti-plasmid during conjugation: possible relation to transformation in crown-gall. Proc. Nat Acad. Sci.,74: 2848 – 2849.PubMedCrossRefGoogle Scholar
  121. 121.
    Tempe, J., Schell, J. 1987. La manipulation des plantes. La Recherche,188: 696 – 709.Google Scholar
  122. 122.
    Tepfer, D. 1984. Transformation of several species of higher plants byAgrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell37: 959 – 967.PubMedCrossRefGoogle Scholar
  123. 123.
    Thompson, C.J., Rao Movva, N., Tizard, R., Crameri, R., Davies, J.E. et al. 1987. Characterization of the herbicide resistance gene bar from Streptomyces hygroscopicus. EMBO J.,6: 2519 – 2523.PubMedGoogle Scholar
  124. 124.
    Uchimiya, H., Fushimi, T., Hashimoto, H., Harada, H., Syono, Y., Sugawara, Y. 1986. Expression of a foreign gene in callus derived from DNA-treated protoplasts of rice (Oryza sativaL.). Mol. Gen. Genet,204: 204 – 207.CrossRefGoogle Scholar
  125. 125.
    Umbeck, P., Johnson, G., Barton, K., Swain, W. 1987. Genetically transformed cotton (Gossypium hirsutumL.) plants. Biotechnology,5: 263 – 266.CrossRefGoogle Scholar
  126. 126.
    Vaeck, M., Reynaerts, A., Hofte, H., Jansens, S., De Beuckeleer, M. et al. 1987. Transgenic plants protected from insect attack. Nature,328: 33 – 37.CrossRefGoogle Scholar
  127. 127.
    Valvekens, D., Van Montagu, M., Van Lijsebettens, M. 1988.Agrobacterium tumefaciens-mediated transformation ofArabidopsis thaliana root explants by using kanamycin selection. Proc. Natl. Acad. Sci. U.S.A.85: 5536–5540.Google Scholar
  128. 128.
    Van Den Elzen, PJ.M., Townsend, J., LEE, K.Y., BEDBROOK, J.R. 1985. A chimeric hygromycin resistance gene as a selectable marker in plant cells. Plant Mol. Biol.,5: 299 – 302.CrossRefGoogle Scholar
  129. 129.
    Van Lijsebettens, M., Valvekens, D., Vanderhaegen, R„ Van Montagu, M. 1989. Highly efficientAgrobacteriummediated transformation ofArabidopsis thaliana: A genetic and molecular evaluation. In Proceedings genetic Manipulation in plant breeding, Plenum Press, Eds. J. Jensen and C.N. Law.Google Scholar
  130. 130.
    Waldron, C., Malcolm, S.K., Murphy, E.B., Roberts, I.L. 1985. Methos for high frequency DNA-mediated transformation of plant protoplasts. Plant Mol. BioL Rep.,3: 169 – 173.Google Scholar
  131. 131.
    Wang, K., Herrera-Estrella, L., Van Montagu, M., Zambryski, P. 1984. Right 25bp terminus sequence of the nopaline T-DNA is essential for and determines direction of DNA transfer fromAgrobacteriumto the plant genome. Cell,38: 45 – 62.CrossRefGoogle Scholar
  132. 132.
    Weising, K., Schell, J., Kahl, G. 1988. Foreign genes in plants: transfer, structure, expression, and application. Annu. Rev. Genet,22: 421 – 477.CrossRefGoogle Scholar
  133. 133.
    White, D.W.R., Greenwood, D. 1987. Transformation of the forage legumeTrifolium repensL. using binaryAgrobacteriumvectors. Plant Mol. Biol.,8: 461 – 469.CrossRefGoogle Scholar
  134. 134.
    Zambryski, P., Joos, H., Genetello, C., Leemans, J., Van Montagu, M., Goodman, H. 1980. Tumor DNA structure in plant cells transformed by A.tumefaciens. Science,209: 1385 – 1391.PubMedCrossRefGoogle Scholar
  135. 135.
    Zambryski, P., Joos, H., Genetello, C., Leemans, J., Van Montagu, M., Schell, J. 1983. Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regenerative capacity. EMBO, J.,2: 2143 – 2150.PubMedGoogle Scholar
  136. 136.
    Zambryski, P. 1988. Basic process underlyingsAgrobacterium-mediated DNA transfer to plant cells. Annu. Rev. Genet.,22: 1 – 30.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • R. S. Sangwan
    • 1
  • B. S. Sangwan-Norreel
    • 1
  1. 1.Faculté des Sciences, Androgenèse et BiotechnologieUniversite de PicardieAmiens CédexFrance

Personalised recommendations