Advertisement

New Approach Towards Controlling Somatic Embryogenesis in Certain Agronomically Important Plants

  • T. Tetu
  • B. S. Sangwan
  • R. S. Sangwan
Part of the Current Plant Science and Biotechnology in Agriculture book series (PSBA, volume 8)

Abstract

Different systems of plantlet regeneration via somatic embryogenesis or organogenesis in sugarbeet (i), soybean (ii) and pea (iii) tissue cultures have been described. Organogenic sugarbeet calli were obtained preferentially from inflorescence apices with an association of zeatin and triiodobenzoïc acid. Somatic embryogenesis from calli or from primary explants needed multiple hormonal sequences and depended from the genotypes used. The liquid consistency of the endosperm was used as a marker for screening the convenient embryogenic zygotic embryos. Interactions between the two morphogenic pathways; i.e, organogenesis and somatic embryogenesis have been scored. Incompletion of the somatic embryos lead to morphogenic developmental phases identical to those observed during adventitious buds formation. However, factors controlling the development of somatic embryos could not be completly elucidated. Scanning electron microscope studies showed the presence of numerous hair cells in the original adventitious buds but not in the dormant somatic embryos. On the contrary, ultrastructural observations revealed a large amount of protein bodies in the embryogenic calli, but not in the organogenic ones. In soybean and pea, direct adventitious somatic embryos were initiated from cultured immature zygotic embryos on Picloram and/or NAA suplemented media. Embryogenic capacity was significantly influenced by genotypes and sizes of the immature embryos at the time of culture. The effect of subculture frequencies were also investigated. Somatic embryos were transferred sequentially to different media until germination. Normal development and elongation was enhanced by reducing the auxin level and by increasing the nitrate level in the germination medium. Finally, these different regeneration systems are discussed as a prerogative for the production of transgenic plants in these three crop plants.

Keywords

Somatic Embryo Somatic Embryogenesis Zygotic Embryo Immature Embryo Immature Zygotic Embryo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Ahmed R., Dutpa S. and Ghosh P.D. 1987. The cytological status of plants regenerated from shoot-meristem culture of Pisum sativumL. Plant Breeding, 98:306–311.CrossRefGoogle Scholar
  2. Armstrong C.L. and Green C.E.,. 1985. Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline. Planta, 164:207–214CrossRefGoogle Scholar
  3. Barwale U.B., Kerns H.R. and Widholm J.M. 1986. Plant regeneration from callus cultures of several soybean genotypes via embryogenesis and organogenesis. Planta, 167:473–481.CrossRefGoogle Scholar
  4. Christianson M. L., Warwick D. A. and Carlson P. S. 1983. A morphogenetically competent soybean suspension culture. Science. 222:632–634.PubMedCrossRefGoogle Scholar
  5. Depta H. and Rubery P.H. 1984. A comparative study of carrier participation in the transport of 2,3,5-triiodobenzoic acid, indole-3-acetic acid, and 2,4-dichlorophenoxyacetic acid by Cucurbita pepo L. hypocotyl segments. J. Plant. Physiol., 115:371–387.Google Scholar
  6. Detrez C., Tetu T., Sangwan R.S. and Sangwan-Norreel B.S. 1988. Direct organogenesis from petiole and thin cell layer explants in sugarbeet cultured in vitro. J. Exper. Bot., 39:917–926.CrossRefGoogle Scholar
  7. Detrez C. 1988. Etude histophysiologique et cytogénétique de l’organogenèse adventive sur pétiole chez Beta vulgaris L. Contribution à la lutte contre la rhizomanie. Thése université de compiègne.Google Scholar
  8. Detrez C., Sangwan R. S. and B.S. Sangwan-Norreel. 1989. Phenotypic and karyotypic status of Beta vulgaris plants regenerated from direct organogenesis in petiole culture. Theor. Appi. Genet (In Press)Google Scholar
  9. Duncan D.R., Williams M.E., Zehr B.E., and Widholm J.M. 1985. The production of callus capabl of plant regeneration from immature embryos of numerous Zea mays genotypes. Planta, 165:322–332.CrossRefGoogle Scholar
  10. Finer J.J 1988. Apical proliferation of embryogenic tissue of soybean (Glycine max L. Merrill). Plant Cell Reports, 7:238–241.CrossRefGoogle Scholar
  11. Freytag A.H., Anand S.C., Rao-Arelli A.P. and Owens L.D. 1988. An improved medium for ádventitious shoot formation and callus induction in Beta vulgaris L. in vitro. Plant Cell Reports, 7: 30–34.CrossRefGoogle Scholar
  12. Griga M., Tejklova E., Novak F.J. and Kubalakova M. 1986. In vitro clonal propagation of Pisum sativum L. Plant Cell Tissue and Organ Culture, 6: 95–104.Google Scholar
  13. Hammatt N. and Davey M.R. 1987. Somatic embryogenesis and plant regeneration from cultured zygotic embryos of soybean (Glycine max L.). J. Plant Physiol., 128:219–226.Google Scholar
  14. Hinchee M.A.W., Connor-Ward D.V.C.W., Newell C.A., Mc-Donnell R.E., Satq S.J., Gasser C.S., Fishhoff D.A., Fraley R.T. and Horsch R.B. 1988. Production of transgenic soybean plants using Agrobacterium mediated DNA transfer. Biotechnology, 6:915–922.CrossRefGoogle Scholar
  15. Hussey G. and Hepher A. 1978. Clonal propagation of sugarbeet plants and the formation of polyploids by tissue culture. Ann. Bot., 42:477–479.Google Scholar
  16. Jacobs M.J., Bubgee W. M. and Gabrielson D.A. 1985. Enumeration, location and characterization of endophytic bacteria withins sugarbeet roots. Canadian journal of batany. 63:1262–1265.CrossRefGoogle Scholar
  17. Jacobsen H J. and Kisely W. 1984. Induction of somatic embryos in Pea (Pisum sativum L.). Plant. Cell. Tissue, and Organ Culture. 3:319–324.CrossRefGoogle Scholar
  18. Kameya T. et Widholm J. 1981. Plant regeneration from hypocotyl sections of Glycine species. Plant. Sci. Letters, 21:289–294.Google Scholar
  19. Kisely W., Myers J.R., Lazzeri P.A., Collins G.B. and Jacobsen H.J. 1987. Plant regeneration via somatic embryogenesis in pea (Pisum sativum L.) Plant Cell Reports, 6:305–308.Google Scholar
  20. Komatsuda T. and Ohyama K. 1988. Genotypes of high competence for somatic embryogenesis and plant regeneration in soybean (Glycine max. Theor. Appl. Genet. 75:695–700.Google Scholar
  21. Lazzeri P.A., Hildebrand D.F. and Collins G.B. 1985. A procedure for plant regeneration from immature cotyledon tissue of soybean. Plant. Mol. Biol. Rep., 3:160–167.CrossRefGoogle Scholar
  22. Lazzeri P.A., Hildebrand D.F. and Collins G.B. 1987. Soybean somatic embryogenesis: effects of hormones and culture manipulations. Plant Cell Tissue and Organ Culture, 10:197–208.CrossRefGoogle Scholar
  23. Lippmann B. and Lippmann G. 1984. Induction of somatic embryos in cotyledonary tissue of soybean, Glycine max L. Merr. Plant Cell Reports, 3:215–218.CrossRefGoogle Scholar
  24. Maheswaran G. and Williams E. G. 1984. Direct somatic embryoïd formation on immature embryos of Trifolium repens, T. pratense and Medicago sativa, and rapid clonal propagation of T. repens. Annals of Botany, 54:201–211.Google Scholar
  25. Maheswaran G. and Williams E. G. 1985. Origin and development of somatic embryoids formed directly on immature embryos of Trifolium repens in vitro. Annals of Botany, 56:619–630.Google Scholar
  26. Maheswaran G. and Williams E. G. 1986b. Direct somatic embryogenesis on immature sexual embryos of Trifolium repens, T. subterraneum and T. resupinatum. Plant. Cell. Reports, 3:165–168.Google Scholar
  27. Maheswaran G. and Williams E.G. 1987. Uniformity of plants regenerated by direct somatic embryogenesis from zygotic embryos of Trifolium repens. Ann. Bot., 59:93–97.Google Scholar
  28. Margara J. 1982. Les bases de la multiplication végétative; les méristèmes et l’organogenèse. (Ed. I.N.R.A).Google Scholar
  29. Mroginski L.A. and Kartha K.K. 1981. Regeneration of pea (Pisum sativumL. cv. Century) plants by in vitroculture of immature leaflets. Plant Cell Reports, 1:64–66.CrossRefGoogle Scholar
  30. Murashige T. and Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant, 15:473–497.CrossRefGoogle Scholar
  31. Natali, and Cavallini A. 1987. Nuclear cytology of callus and plantlets regenerated from pea (Pisum sativumL.) meristems. Protoplasma, 141:121–125.CrossRefGoogle Scholar
  32. Phillips G.C. and Collins G.B. 1981. Induction and development of somatic embryos from cell suspension cultures of soybean. Plant Cell Tissue Organ Cult., 1:123–129.CrossRefGoogle Scholar
  33. Ragavhan V. 1986. Embryogenesis in angiosperms. (Ed) Cambridge University Press.Google Scholar
  34. Ranch J.P., Oglesby L. and Zielinski A.C. 1985. Plant regeneration from embryo-derived tissue cultures of soybeans in vitro. Cell. Dev. Biol. 21:653–658.Google Scholar
  35. Ronchi V.N., Caligo, M.A., Nozzolini M. and Luccarini G. 1984. Stimulation of carrot somatic embryogenesis by proline and serine. Plant Cell Report. 3:210–214.CrossRefGoogle Scholar
  36. Rubery P.H 1980. The mechanism of transmembrane auxin transport and its relation to the chemiosmotic hypothesis of the polar transport of auxin. In.: Plant growth substances 1979, pp. 50–60, Skoog, F., Ed. Springer, Berlin Heideberg New York.Google Scholar
  37. Rubery P.H. 1987. Auxin transport In: Plant hormones and their role in plant growth and development, DAVIES P.J. (ed.) Martinus NIJHOFF Publishers):341–362.Google Scholar
  38. Rubluo A., Mroginski L., and Kartha K.K. 1981. Morphogenetic responses of pea leaflets cultured in vitro. In: Fujiwara A. ed. Plant Tissue Culture 1982. Tokyo: The Japanese Assoc. Plant Tissue Culture, pp.151–152.Google Scholar
  39. Rubluo A., Kartha K.K., Mroginski L.A. and Dyck J. 1984. Plant regeneration from Pea leaflets cultured in vitroand genetic stability of regenerants. J. Plant Physiol., 117:119–130.Google Scholar
  40. Sang Wan R.S. 1983. Effects of exogenous amino acids of in vitro androgenesis of Datura. Biochem. Physiol. Pflanzen. 178:415–422.Google Scholar
  41. Saunders J.W. 1984. Shoot-regeneration from hormone-autonomous callus fom shoot cultures of several sugarbeet (Beta vulgaris L.) genotypes. Plant Sci. Let. 34:219–223.Google Scholar
  42. Saunders J.W. and Doley W.P. 1986. One step shoot regeneration from callus of whole plant leaf explants of sugarbeet lines and a somaclonal variant for in vitrobehavior. J. Plant Physiol., 124;473–479.Google Scholar
  43. Sung, Z. R. and Okimoto R. 1981. Embryogenie proteins in carrot somatic embryos. Proc. Nat Acad. Sci. USA 78:3683–3687PubMedCrossRefGoogle Scholar
  44. Tetu T. 1985. Aptitudes morphogénétiques in vitro de divers explants chez la betterave à sucre. D.E.A. de Biologie et Physiologie Végétales. University of PARIS VI, PARIS, FRANCE.Google Scholar
  45. Tetu T., Sangwan R.S. and Sangwan-Norreel B.S. 1987. Hormonal control of organogenesis and somatic embryogenesis in Beta vulgariscallus. J. Exp. Bot., 38:506–517.CrossRefGoogle Scholar
  46. Tetu T., Sangwan-Norreel B.S. and SANGWAN R.S. 1987. Embryogenèse somatique et régénération in vitrochez trois variétés précoces de Soja. C.R. Acad. Sci., Paris, 305:613–617.Google Scholar
  47. Tetu T.; Sangwan R.S. and Sangwan B. 1989. Direct somatic embryogenesis and organogenesis in cultured immature embryos of Pisum sativum L. (In Press).Google Scholar
  48. Tetu T. 1989. Régénération de plantes in vitro par organogenèse et embryogenèse somatique chez la betterave sucrière (Beta vulgaris L., le Pois (Pisum sativum L.) et le Soja (Glycine max. L). Etudes physiologiques, morphologiques, anatomiques et ultrastucturales.Google Scholar
  49. Tomes D.T. 1985. Cell culture, somatic embryogenesis and plant regeneration in maize, rice, sorghum and millets. In: Bright, S.W.J. and M.G.K. Jones (Eds), Cereal Tissue and cell culture, pp 175 – 203. Martinus Nijhoff/Dr W. Junk Publ, Dordrecht, NetherlandsGoogle Scholar
  50. Trigiano R.N. and Conger B.V. 1987. Regulation of growth and somatic embryogenesis by proline and serine in suspension culture of Dactylis glomerata. J. Plant Physiol. 130:49–55Google Scholar
  51. Van Geyt J.P.C. and Jacobs M. 1985. Suspension culture of sugarbeet (Beta vulgaris L.). Induction and habituation of dedifferentiated and self-regenerating cell lines. Plant Cell Reports, 4:66–69.CrossRefGoogle Scholar
  52. Vas IL I.K. 1988. Progress in the regeneration and genetic manipulation of cereal crops. Bio/Technology, 6:397–401.CrossRefGoogle Scholar
  53. Von Arnold S. 1986. Improved efficiency of somatic embryogenesis in mature embryos of Picea abies L;. Karst. J. Plant Physiol. 128:233–244.Google Scholar
  54. Wright M.S., Ward D.V., Hinchee M.A., Carnes M.G. et Kaufman RJ. 1987. Regeneration of soybean (Glycine max L. Merr.) from cultured primary leaf tissue. Plant Cell Reports, 6:83–89.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • T. Tetu
    • 1
  • B. S. Sangwan
    • 1
  • R. S. Sangwan
    • 1
  1. 1.Androgenèse et Biotechnologie; U.F.R. de SciencesUniversité de PicardieAmiensFrance

Personalised recommendations