Ion Deposition Due To Fog Water Interception at High Elevations

  • G. Kroll
  • P. Winkler

Summary

The ion deposition via fog interception has been estimated using a one dimensional cloud droplet deposition model and measured concentrations of trace constituents. The model uses observed meteorological data as input parameters. The fog deposition becomes important for mountain regions which rise more than 600 m above the surrounding flat terrain. The ion deposition via fog becomes as important or more important than wet deposition above that heights. The regional variation of ion deposition via fog is much higher than that of precipitation due to large variations in the fog respectively cloud water composition. Although the present assessment is still relatively uncertain, we can conclude that a cut of extreme concentrations reduces the ion deposition over proportionally.

Keywords

Cloud Water Capture Efficiency Liquid Water Content Stokes Number Drop Size Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Bache, D. H.: Particulate transport within plant canopies. I: A framework for analysis. Atm. Environ. 13 (1979) 1257–1262. II: Prediction of deposition velocities. Atm. Environ. 13 (1979) 1681 – 1687.Google Scholar
  2. Chylek, P.: Extinktion and LWC in fogs and clouds. J. Atm. Sci. 35 (1978) 296 – 300.Google Scholar
  3. Garland, J. A.: Some fog drop size distributions obtained by an impaction method. Quart. J. Roy. Met. Soc. 97 (1971) 483 – 494.CrossRefGoogle Scholar
  4. Grunow, J.: Probleme der Niederschlagserfassung und ihre Bedeutung für die Wirtschaft. Met. Rdsch. 9 (1956) 62 – 68.Google Scholar
  5. Jonas, R.: Ablagerung und Bindung von Luftverunreinigungen an Vegetation und anderen atmosphärischen Grenzflächen. KFA Jülich GmbH (Abt. Sicherheit und Strahlenschutz) (1984) S. 1949.Google Scholar
  6. Kroll, G., Winkler, P.: Estimation of wet deposition via fog. In: K. Grefen, J. Löbel (eds.). Environmental Meteorology, (1988) 227 – 236.Google Scholar
  7. Kroll, G., Winkler, P.: Estimation of wet deposition via fog. In: K. Grefen, J. Löbel (eds.). Environmental Meteorology, (1988) 227 – 236.Google Scholar
  8. Linke, F.: Niederschlagsmessungen unter Bäumen. Meteorol. Zeitschr. (1916) 141.Google Scholar
  9. Lovett, G.M.: Rates and mechanisms of cloud water deposition to a subalpine balsam forest. Atm. Environ. 18 (1984) 361 – 371.Google Scholar
  10. Lovett, G. M., Reiners, W.A.: Canopy structure and cloud water deposition in subalpine coniferous forests.Tellus 38B (1986) 319 – 327.Google Scholar
  11. Pinnick, G. R., Jennings S. G., Chylek, P., Auvermann, H. J.: Verification of a linear relation between IR extinction, absorption and LWC of fogs. J. Atm. Sci. 36 (1979) 1577 – 1586.CrossRefGoogle Scholar
  12. Thome, P. G., Lovett, G. M., Reiners, W. A.: Experimental determination of droplet impaction of canopy components of Balsam fir. Journ. Appi. Met. 21 (1982) 1413 – 1416.Google Scholar
  13. Winkler, P.: Observation on fog water composition in Hamburg. In: Atmospheric Pollutants, H.-W. Georgii (ed.). D.Reidei Pubi. Comp., Dordrecht/Holland (1986) 143 – 151.Google Scholar

Copyright information

© ECSC, EEC, EAEC, Brussels and Luxembourg 1990

Authors and Affiliations

  • G. Kroll
    • 1
  • P. Winkler
    • 1
  1. 1.Deutscher Wetterdienst Meteorologisches Observatorium HamburgHamburg 65Germany

Personalised recommendations