Advertisement

Laser Photofragment Emission: A Novel Technique for the Study of Gas Phase Reactions of the CH3O2 Radical

  • D. Hartmann
  • J. karthäuser
  • R. Zellner

Summary

Product investigations of the 248 nm excimer photolysis of the CH3O2 radical have revealed the fractional formation of excited OH (A2 Σ+, v“ = O) radicals. Emission from this OH state can be used as a selective and sensitive monitor of CH3O2 in kinetic experiments. We have applied this technique to a study of the reactions (1) CH3O2 + NO—> CH3O + NO2 and (2) CH3O2 + HO2 —> products, for which the rate constant were found to be k1 = (7.8 ± 1.7) 10-12 cm3/s and k2 = (5.2 ± 1.5) 10-12 cm3/s at 298 K in good agreement with results previously obtained in different laboratories. An interference of the CH3O2 photofragment emission with HO2 has not been noted.

Keywords

Rate Coefficient Kinetic Experiment Laser Photolysis Trigger Sequence Mass Balance Consideration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ( 1 ).
    Jenkin,M.A., Cox, R.A., Hayman, G. and Whyte, L.J. (1988), J. Chem. Soc. Faraday Trans. II. 84, 913Google Scholar
  2. ( 2 ).
    Simon, F., Schneider, W. and Lesclaux, R., (1989) Int. J. Chem. Kin. In pressGoogle Scholar
  3. ( 3 ).
    Moortgart, G., Veryret , B. and Lesclaux, R., (1989), J. Phys Chem. in pressGoogle Scholar
  4. 4.
    Lightfoot, P.D., Lesclaux, R. and Veyret. B, (1989), J. Phys. Chem., in pressGoogle Scholar
  5. ( 5 ).
    Ewig. F., RHÄSA. D. and Zellner, R. (1987). Ber. Bungeses. Phys. Chem. 91, 708Google Scholar
  6. ( 6 ).
    Zellner, R., Hartmann, D., Karthauser,J., Rhasa,D. and Weibring, G. (1988) J. Chem. Soc. Faraday, Trans. II., 84, 549Google Scholar
  7. ( 7 ).
    Hartmann, D., Karthauser, J. and Zellner, R. (1989) to be publishedGoogle Scholar
  8. ( 8 ).
    Hartmann, D., (1989); Ph. D. Dissertation, University of GöttingenGoogle Scholar
  9. ( 9 ).
    Lee, L.C. (1982), J. Chem Phys. 76, 4909CrossRefGoogle Scholar
  10. ( 10 ).
    Vasquez, G.J Peyerimhoff, S.D and Buenker, R.J. (1985), Chem. Phys. 99, 235Google Scholar
  11. ( 11 ).
    Demore, W.B., Molina, M.J., Golden, D.M., Hampson, R.F., Kurylo, M.J., Howard, C.J., Ravishankara, A.R and Sander, S.P.(1987) NASA/JPL-Publication 87-41Google Scholar
  12. ( 12 ).
    Cox, R.A. and Tyndall, G. (1980)., J. Chem. Soc. Faraday Trans II.,76, 153Google Scholar
  13. ( 13 ).
    Moortgat, G.K., Buurows, J.P., Schneider, W., Tyndall, G.S. and Cox, R.A (1986); IVth European Symp. on Physical and Chemical Behaviour of Atmospheric Pollutants, SteresaGoogle Scholar
  14. ( 14 ).
    Dagaut, P., Wallington, T.J. and Kurylo, M.J. (1988), J. Phys. Chem. 92., 3833CrossRefGoogle Scholar

Copyright information

© ECSC, EEC, EAEC, Brussels and Luxemberg 1990

Authors and Affiliations

  • D. Hartmann
    • 1
  • J. karthäuser
    • 1
  • R. Zellner
    • 2
  1. 1.Institut für Physikalische ChemieUniversität GöttingenGöttingenGermany
  2. 2.Institut für Physikalische Chemie und ElektrochemieUniversität HannoverHannoverGermany

Personalised recommendations