Classical Transport Properties of Plasmas

  • C. T. Dum
Part of the NATO ASI Series book series (ASIC, volume 305)

Abstract

Classical transport theory is discussed, with special emphasis on recent developments necessitated by the particular properties of Coulomb collisions. These properties are contrasted with scattering by neutral particles and by plasma turbulence. The rapid decrease of the scattering cross section with energy usually requires extensions of the Chapman-Enskog method. A method applicable to isotropization by Coulomb collisions, or any other (turbulence) scattering mechanism, is outlined. The structure of transport relations is exhibited for this more general case. The potential and the problems associated with various truncation schemes for an expansion of the distribution function or its moments is discussed. Recent methods for dealing with the breakdown of collision dominated transport are illustrated for electron heat flux.

Keywords

Heat Flux Solar Wind Kinetic Equation Moment Equation Transport Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldwin, D. E. and Watson, C. J. H. (1977) ‘Magnetized plasma kinetic theory-II. Derivation of the Rosenbluth potentials for a uniform magnetized plasma’, Plasma Phys., 19,517–528.ADSCrossRefGoogle Scholar
  2. Balescu, R. (1960) ‘Irreversible processes in ionized gases’, Phys. Fluids, 3, 52–63.MathSciNetADSMATHCrossRefGoogle Scholar
  3. Barakat, A. R. and Schunk, R. W. (1982) ‘Transport equations for multicomponent anisotropic space plasmas: A review’. Plasma Phys., 24, 389–418.MathSciNetADSCrossRefGoogle Scholar
  4. Bell, A. R., Evans, R. G., and Nicholas, D. J. (1981) ‘Electron energy transport in steep temperature gradients in laser-produced plasmas’, Phys. Rev. Lett., 46, 243–246.ADSCrossRefGoogle Scholar
  5. Belyi, V. V., Dewulf, D., and Paiva-Veretennicoff, I. (1989) ‘Anomalous transport in strongly inhomogenous systems. II. The generalized hydrdynamics of a two-component plasma’, Phys. Fluids B, 1, 317–324.ADSCrossRefGoogle Scholar
  6. Bond, D. J. (1981) ‘Approximate calculation of the thermal conductivity of a plasma with an arbitrary temperature gradient’, J. Phys. D, 14, L43–L46.ADSCrossRefGoogle Scholar
  7. Bowers, E. and Haines, M. G. (1968) ‘Fluid equations for a collisionless plasma including finite ion Larmor radius and finite P effects’, Phys. Fluids, 11, 2695–2708.ADSCrossRefGoogle Scholar
  8. Braginskii, S. I. (1967) ‘Transport processes in a plasma’, in Reviews of Plasma Physics, vol. I, M. A. Leontovich (ed.), Consultants Bureau New York, pp. 205–311.Google Scholar
  9. Burgers, J. M. (1969) Flow Equations for Composite Gases, Academic Press, New York.MATHGoogle Scholar
  10. Chandrasekhar, S. (1942) Principles of Stellar Dynamics, Chapter I I, Univ. Chicago Press, Chicago.Google Scholar
  11. Chapman, S. and Cowling, T. G. (1970) The Mathematical Theory of Non-Uniform Gases, 3rd edition, Cambridge Univ. Press, London.Google Scholar
  12. Chew, G. F., Goldberger, M. L., and Low, F. E. (1956) ‘The Boltzmann equation and the One-fluid hydromagnetic equations in the absence of particle collisions’, Proc. Roy. See., A 236, 112–118.MathSciNetADSCrossRefGoogle Scholar
  13. Chodura, R. and Pohl, F. (1971) ‘Hydrodynamic equations for anisotropic plasmas in magnetic fields-II Transport equations including collisions’. Plasma Phys., 13, 645–658.ADSCrossRefGoogle Scholar
  14. Cohen, R. S., Spitzer,Jr., L., and Routly, P. McR. (1950) ‘The electrical conductivity of an ionized gas’, Phys. Rev., 80, 230–238.MathSciNetADSMATHCrossRefGoogle Scholar
  15. Cowie, L. L. and McKee, C. F. (1977) ‘The evaporation of spherical clouds in a hot gas. 1. Classical and saturated mass loss rates’, Astrophys. J., 211, 135–146.ADSCrossRefGoogle Scholar
  16. Craig, I. J. D. and Davys, J. W. (1984) ‘Heat flux saturation in hydrodynamic soft x-ray solar flare plasmas’, Sol. Phys., 90, 343–356.ADSCrossRefGoogle Scholar
  17. Cuperman, S., Weiss, L, and Dryer, M. (1980) ‘Higher order fluid equations for multicomponent nonequilibrium stellar (plasma) atmospheres and star clusters’, Astrophys. J., 239, 345–359.MathSciNetADSCrossRefGoogle Scholar
  18. Dum, C. T. (1975) ‘Strong-turbulence theory and the transition from Landau to collisional damping’, Phys. Rev. Lett., 35, 947–950.ADSCrossRefGoogle Scholar
  19. Dum, C. T. (1978a) ‘Anomalous heating by ion sound turbulence’, Phys. Fluids, 21, 945–955.ADSMATHCrossRefGoogle Scholar
  20. Dum, C. T. (19786) ‘Anomalous electron transport equations for ion sound and related turbulent spectra’, Phys. Fluids, 21, 956–969.CrossRefGoogle Scholar
  21. Dum, C. T. (1983) ‘Electrostatic waves and anomalous transport in the solar wind’, in Proc. Solar Wind V, NASA Conf. Publ. 2280, M. Neugebauer, NASA, Wafihington,D. C., pp. 369–376.Google Scholar
  22. Dum, C. T. and Pfirsch, D. (1972) ‘Neoclassical transport in a strong magnetic field’. Fifth European Conference on Controlled Fusion and Plasma Physics, vol.1,13, Euratom CEA, Grenoble.Google Scholar
  23. Earl, J. A., Jokipii, J. R., and Morfill, G. (1988) ‘Cosmic-ray viscosity’, Astrophys. J., 331, L91–L94.ADSCrossRefGoogle Scholar
  24. Frieman, E., Davidson, R., and Langdon, B. (1966) ‘Higher order corrections to the Chew-Goldberger-Low theory’, Phys. Fluids, 9, 1475–1482.MathSciNetADSCrossRefGoogle Scholar
  25. Ganguli, S. B. and Pabnadesso, P. J. (1987) ‘Plasma transport in the auroral return current region’, J. Geophys. Res., 92, 8673–8690.ADSCrossRefGoogle Scholar
  26. Ganguli, S. B. and Palmadesso, P. J. (1989) Private communication.Google Scholar
  27. Grad, H. (1949) ‘On the kinetic theory of rarefied gases’. Comm. Pure a. Appl. Math., 2, 331–407.MathSciNetMATHCrossRefGoogle Scholar
  28. Grad, H. (1958) ‘Principles of the kinetic theory of gases’, in Handbuch der Physik Vol. 12, S. Fliigge (ed.). Springer, Berlin, pp. 205–294.Google Scholar
  29. Griffel, D. H. and Davis, L. (1969) ‘The anisotropy of the solar wind’. Plan. Space Sci., 17, 1009–1020.ADSCrossRefGoogle Scholar
  30. Gross, E. P., Jackson, E. A., and Ziering, S. (1959) ‘Boundary value problem in kinetic theory of gases’, Ann. Phys. N.Y., 1, 141–167.MathSciNetADSCrossRefGoogle Scholar
  31. Hassan, M. H. A. and Watson, C. J. H. (1977a) ‘Magnetized plasma kinetic theory-L Derivation of the kinetic equation for a uniform magnetized plasma’. Plasma Phys., 19, 237–247.ADSCrossRefGoogle Scholar
  32. Hassan, M. H. A. and Watson, C. J. H. (19776) ‘Magnetized plasma kinetic theory-Ill. Fokker-Planck coefficients for a uniform magnetized plasma’. Plasma Phys., 19, 627–649.Google Scholar
  33. Jeans, J. H. (1929) Astronomy and Cosmogony, Cambridge Univ. Press, Cambridge.MATHGoogle Scholar
  34. Jokipii, J. R., Kota, J., and Morfill, G. (1989) ‘Cosmic Rays at fluid discontinuities’, to be published.Google Scholar
  35. Jokipii, J. R. and Morfill, G. (1989) ‘Particle acceleration in step function shear flows: A microscopic analysis’, to be published.Google Scholar
  36. Kaneko, S. (1960) ‘Transport coefficients of plasmas in a magnetic field’, J. Phys. Soc. Japan, 15, 1685–1696.ADSCrossRefGoogle Scholar
  37. Kennel, C. F. and Greene, J. M. (1966) ‘Finite Larmor radius hydromagnetics’, Ann. Phys., 38, 63–94.ADSCrossRefGoogle Scholar
  38. Khan, S. A. and Rognlien, T. D. (1981) ‘Thermal heat fiux for arbitrary collisionality’, Phys. Fluids, 24, 1442–1446.ADSMATHCrossRefGoogle Scholar
  39. Kho, T. H. and Haines, M. G. (1986) ‘Nonlineax electron transport in magnetized laser plasmas’, Phys. Fluids, 29, 2665–2671.ADSCrossRefGoogle Scholar
  40. Landshoff, R. (1951) ‘Convergence of the Chapman-Enskog method’, Phys. Rev., 82, 442.ADSCrossRefGoogle Scholar
  41. Langdon, A. B. (1980) ‘Nonlinear inverse Bremsstrahlung and heated-electron distributions’, Phys. Rev. Lett., 44, 575–579.ADSCrossRefGoogle Scholar
  42. Larson, R. B. (1970) ‘A method for computing the evolution of star clusters’, M. N. R. A. S., 147, 323–337.ADSGoogle Scholar
  43. Lenard, A. (1960) ‘On Bogoliubov’s kinetic equation for a spatially homogeneous plasma’, Ann. Phys. N. Y., 3, 390.MathSciNetADSCrossRefGoogle Scholar
  44. Lindman, E. L. and Swartz, K. (1986) ‘Analytic studies of hot electron transport’, Phys. Fluids, 29, 2657–2664.ADSCrossRefGoogle Scholar
  45. Livi, S. and Marsch, E. (1986) ‘Generation of solar wind proton tails and double beams by Coulomb collisions’, J. Geophys. Res., 92, 7255–7261.ADSCrossRefGoogle Scholar
  46. MacMahon, A. (1965) ‘Finite gyro-radius corrections to the hydromagnetic equations for a Vlasov Plasma’, Phys. Fluids, 8, 1840–1845.MathSciNetADSCrossRefGoogle Scholar
  47. Marsch, E. and Livi, S. (1985) ‘Coulomb self-collision frequencies for self-similar and kappa distributions’, Phys. Fluids, 28, 1379–1386.ADSMATHCrossRefGoogle Scholar
  48. Matte, J. P. and Virmont, J. (1982) ‘Electron heat transport down steep temperature gradients’, Phys. Rev. Lett., 49, 1936–1939.ADSCrossRefGoogle Scholar
  49. Mintzer, D. (1965) ‘General orthogonal polynomial solution of the Boltzmann equation’, Phys. Fluids, 8, 1976–1990.CrossRefGoogle Scholar
  50. Oraevskii, V., Chodura, R., and Feneberg, W. (1968) ‘Hydrodynamic equations for plasmas in strong magnetic fields-I Collisionless approximation’, Plasma Phys., 10, 819–828.ADSCrossRefGoogle Scholar
  51. Palmadesso, P. J., Ganguli, S. B., and Mitchell,Jr., H. G. (1988) ‘Multimoment fluid simulations of transport processes in the auroral zones’, in Modelling Magetospheric Plasma, AGU Monograph, vol.44, T. E. Moore and J. H. Waite, AGU, Washington, p. 133.Google Scholar
  52. Pilipp, W. G., Miggenrieder, H., Montgomery, M. D., Miihlhauser, K.-H., Rosenbauer, H., and Schwenn, R. (1987) ‘Characteristics of electron velocity distribution functions in the solar wind derived from the Helios Plasma Experiment’, J. Geophys. Res., 92,1075–1092.ADSCrossRefGoogle Scholar
  53. Robinson, B. B. and Bernstein, L B. (1962) ‘A variational description of transport phenomena in a plasma’, Ann. Physics, 18, 110–169.MathSciNetADSMATHCrossRefGoogle Scholar
  54. Rogers, J. H., De Groot, J. S., Abou-Assaleh, Z., Matte, J. P., Johnston, T. W., and Rosen, M. D. (1989) ‘Electron heat transport in a steep temperature gradient’, Phys. Fluids B, 1, 741–749.ADSCrossRefGoogle Scholar
  55. Rosenbluth, M. N., MacDonald, W. M., and Judd, D. L. (1957) ‘Fokker-Planck equation for an inverse-square force’, Phys. Rev., 107, 1–6.MathSciNetADSMATHCrossRefGoogle Scholar
  56. Roussel-Dupré, R. (1981) ‘Computations of ion diffusion coefficients from the Boltzmann-Fokker-Planck equation’, Astrophys. J., 243, 329–343.ADSCrossRefGoogle Scholar
  57. Salat, A. (1975) ‘Non-linear plasma transport equations for high flow velocity’, Plasma Phys., 17, 589–607.ADSCrossRefGoogle Scholar
  58. Scudder, J. D. and Olbert, S. (1979) ‘A theory of local and global processes which affect solar wind electrons, I. The origin of typical 1 AU velocity distribution functions-steady state theory’, J. Geophys. Res., 84, 2755–2772.ADSCrossRefGoogle Scholar
  59. Shirazian, M. H. and Steinhauer, L. (1981) ‘Kinetic-theory description of electron heat transfer in a plasma’, Phys. Fluids, 24, 843–850.ADSMATHCrossRefGoogle Scholar
  60. Shvarts, D., Delettrez, J., McCrory, R. L., and Verdon, C. P. (1981) ‘Self-consistent reduction of the Spitzer-Härm electron thermal heat flux in steep temperture gradients in Laser-produced plasmas’, Phys. Rev. Lett., 47, 247–250.ADSCrossRefGoogle Scholar
  61. Spitzer,Jr.., L. I. (1962) The Physics of Fully Ionized Gases, Interscience, New York.Google Scholar
  62. Spitzer,Jr., L. I. and Harm, R. (1953) ‘Transport theory in a completely ionized gas’, Phys. Rev., 89, 977–981.ADSMATHCrossRefGoogle Scholar
  63. Yaseen, F., Retterer, J. M., Chang, T., and Winningham, J. D. (1989) ‘Monte-Carlo modeling of polar wind photoelectron distribution with anomalous heat flux’, Geophys. Res. Lett., 16, 1023–1026.ADSCrossRefGoogle Scholar
  64. Zimmerman, G. B. and Kruer, W. L. (1975) ‘Numerical simulation of laser-initiated fusion’. Comments Plasma Phys., 2, 85.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • C. T. Dum
    • 1
  1. 1.Max-Planck Institut für Physik und Astrophysik Institut für extraterrestrische PhysikGarchingFederal Republic of Germany

Personalised recommendations