Quantum Effects in Magnetized Electron-Positron Plasmas: Synchrotron Pair Cascades and Gamma-ray Burst Spectra

  • Matthew G. Baring
Part of the NATO ASI Series book series (ASIC, volume 305)


Modelling of gamma-ray burst spectra with optically thin synchrotron emission in strong magnetic fields is examined. The properties of burst sources that suggest the existence of electron-positron pairs and strong magnetic fields in the emission region are summarized. In such a field, interesting quantum processes occur, such as the creation of an electron-positron pair by a free photon and the splitting of a photon in two. These have a profound influence on the synchrotron emission modelling of the continuum of burst sources. The basic properties of these processes of these sources are reviewed. The spectrum is attenuated at gamma-ray energies, which may or may not be observed. Pairs that are created by photons can reradiate synchrotron photons at lower energies that may create further pairs. The process can continue forming a pair cascade. The equilibrium spectra from such cascades are calculated to see what modifications the pair creation makes to the hard X-ray synchrotron spectrum: it is found that the spectral index does not change from that expected without any pair production. The distribution of angles of radiation and particles with respect to the direction of the magnetic field is also considered, and it is found that accurate fitting of hard gamma-ray burst spectra above 1 MeV is possible.


Neutron Star Pair Production Optical Depth Spectral Index Strong Magnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, S. L.: 1971 Ann. Phys. 67, 599ADSCrossRefGoogle Scholar
  2. Barat,C., et al.: 1984 Astrophys. J. (Letters) 286, L11ADSCrossRefGoogle Scholar
  3. Baring, M. G.: 1988a Mon. Not. Roy. astr. Soc. 235, 51ADSGoogle Scholar
  4. Baring, M. G.: 1988b Mon. Not. Roy. astr. Soc. 235, 79ADSGoogle Scholar
  5. Baring, M. G.: 1988b Mon. Not. Roy. astr. Soc. 235, 79ADSGoogle Scholar
  6. Baring, M. G.: 1989b Mon. Not Roy. astr. Soc. submittedGoogle Scholar
  7. Brainerd, J. J., and Lamb, D. Q.: 1987 Astrophys. J. 313, 231ADSCrossRefGoogle Scholar
  8. Brainerd, J. J., and Petrosian, V.: 1987 Astrophys. J. 320, 703ADSCrossRefGoogle Scholar
  9. Bussard, R. W., and Lamb, F. K.: 1982 in Gamma Ray Transients and Related Astrophysical Phenomena eds. Lingenfelter, R. E., et al., ( AIP, New York ) p 189Google Scholar
  10. Daugherty J. K., and Harding, A. K.: 1983 Astrophys. J. 273, 761ADSCrossRefGoogle Scholar
  11. Epstein, R., 1986 in Radiative Hydronamics in Stars and Compact Objects eds. Winkler, W., H., and Mihalas, D., ( Springer, Heidelberg )Google Scholar
  12. Erber, T.: 1966 Rev. Mod. Phys. 38, 626MathSciNetADSCrossRefGoogle Scholar
  13. Fenimore, E.E., et al..: 1988 Astrophys J. (Letters). 335, L71ADSCrossRefGoogle Scholar
  14. Guilbert, P. W., Fabian, A. C., and Rees, M. J.: 1983 Mon. Not Roy. astr. Soc. 205, 593ADSGoogle Scholar
  15. Heuter, G. J.: 1984 in High Energy Transients in Astrophysics ed. Woosley, S. E., ( AIP, New York ) p 373Google Scholar
  16. Klebesadel, R. W., Strong, L B., and Olson, R. A.: 1973 Astrophys. J. (Letters) 182, L85ADSCrossRefGoogle Scholar
  17. Lamb, D. Q.: 1984 Ann. New York Acad. Science 422, 237ADSCrossRefGoogle Scholar
  18. Liang, E. P.: 1986 Astrophys. J. (Letters) 308, L17ADSCrossRefGoogle Scholar
  19. Liang, E. P., Jernigan, T. E., and Rodrigues, R.: 1983 Astrophys. J. 271, 766ADSCrossRefGoogle Scholar
  20. Lightman, A. P., and Zdziarski, A. A.: 1987 Astrophys. J. 319, 643ADSCrossRefGoogle Scholar
  21. Mazets, E. P.: 1988 Adv. Space Res. 8, 669ADSCrossRefGoogle Scholar
  22. Mazets, E. P., et al..: 1979 Nature 282, 587ADSCrossRefGoogle Scholar
  23. Mazets, E. P., et al..: 1981 Nature 290, 378ADSCrossRefGoogle Scholar
  24. Murakami, T., et al..: 1988 Nature 335, 234ADSCrossRefGoogle Scholar
  25. Nolan, P. L., et al..: 1983 in Positron-Electron Pairs in Astrophysics, eds: Burns, M. L., et al., ( AIP, New York ) p 59Google Scholar
  26. Nolan, P. L., et al..: 1984 in High Energy Transients in Astrophysics ed. Woosley, S. E., ( AIP, New York ) p 399Google Scholar
  27. Pacini, F.: 1968 Nature 219, 145ADSCrossRefGoogle Scholar
  28. Paczyński, B.: 1986 Astrophys. J. (letters) 308, L43ADSCrossRefGoogle Scholar
  29. Ramaty, R., and Mészáros, P.: 1981 Astrophys. J. 250, 384ADSCrossRefGoogle Scholar
  30. Schaefer, B. E.: 1984 Nature 294, 722,ADSCrossRefGoogle Scholar
  31. Sokolov, A. A., and Ternov, I. M.: 1968 Synchrotron Radiation ( Pergamon Press, Oxford )Google Scholar
  32. Sturrock, P. A.: 1971 Astrophys. J. 164, 529ADSCrossRefGoogle Scholar
  33. Usov, V. V., and Shabad, A. E.: 1983 Sov. Astron. Letters 9, 212ADSGoogle Scholar
  34. Usov, V. V., and Shabad, A. E.: 1983 Sov. Astron. Letters 9, 212ADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Matthew G. Baring
    • 1
  1. 1.Max Planck Institut für AstrophysikGarching bei MünchenWest Germany

Personalised recommendations