Advertisement

A Star Formation Scenario for the Explanation of Seyfert Type 2 Activity: MK 348

  • M. L. García-Vargas
  • A. I. Díaz
  • R. Terlevich
  • E. Terlevich
Conference paper
Part of the Astrophysics and Space Science Library book series (ASSL, volume 160)

Abstract

In the frame of the VSF scenario, a young star cluster a few Myr old contributing about 8% to the total light at Hβ is required in order to reproduce the observed emission line spectrum of Mk 348 (García-Vargas et al 1989). This cluster should dominate the light shortward of 4000 Å. We have synthesized the SED of such a cluster using a homogeneous set of evolutionary tracks for stars of solar composition with masses between 1 and 120 M (Maeder 1987 and private communication). The most massive of these stars (m ≥ 60 M) evolve to the left of the HR diagram and are identified with the “warmers” (Terlevich &, Melnick 1985). Emergent stellar fluxes have been taken from the model atmospheres by Clegg et al (1987) for stars with T eff ≥ 50000 K and Kurucz (1979) for stars with 5000 K ≤ T eff ≤ 50000 K. For stars of T eff ≤ 5000 K the stellar atlas by Jacobi et al (1984) has been used. The cluster is assumed to form in a burst with an IMF with a Salpeter slope. The computed spectrum is shown in Fig. 1 (solid line) in a logv logF v , scale.

Keywords

Star Formation Star Formation Region Evolutionary Track Royal Greenwich Observatory Small Magellanic Cloud 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Clegg, R.E.S., Middlemass, D., 1987 Mon. Not. R astr. Soc, 228, 759.ADSGoogle Scholar
  2. Díaz, Prieto, M.A. & Wamsteker, W. 1988. Astr. Astrophys, 1983, 53.Google Scholar
  3. García-Vargas M.L., Díaz, A.I., Terlevich, R. & Terlevich, E. 1989. Astrophys. & Space Science, 157, 125.ADSCrossRefGoogle Scholar
  4. Jacobi, G.H., Hunter, D.A., & Christian, C.A. 1984. Astrophys. J. Suppl. Ser, 56, 257.ADSCrossRefGoogle Scholar
  5. Koski, A.T. 1978. Astrophys. J, 223, 56.ADSCrossRefGoogle Scholar
  6. Kurucz, R. 1979. Astrophys. J. Suppl. Ser, 40, 1.ADSCrossRefGoogle Scholar
  7. Maeder, A. 1987. Astr. Astrophys, 182, 243.ADSGoogle Scholar
  8. Mediavilla, E., Pastoriza, M.G. & Battaner, E. 1989. Astrophys. & Space Science, 157.Google Scholar
  9. Nandy,K.,Morgan,D.H.,Willis,A.J.,Wilson,R.,Gondhalekar,P.M., 1981. Mon. Not. R astr. Soc, 196, 955.ADSGoogle Scholar
  10. Neff, S.G. & de Bruyn, A.G. 1983. Astr. Astrophys, 128, 318.ADSGoogle Scholar
  11. Neugebauer, G., Morton,D., Oke,J.B., Becklin,E., Daltabuit,E., Matthews,K., Persson, S.E., Smith,A.M., Soifer, B.T., Torres-Peimbert, S., Wyn-Williams,C.G., 1980 Astrophys. J, 238, 502.ADSCrossRefGoogle Scholar
  12. Prevot,M.L., Lequeux,J., Maurice,E.,Prevot,L. & Rocca-Volmerange,B. 1984. Astr. Astrophys, 132, 389.ADSGoogle Scholar
  13. Seaton, M.J. 1979. Mon. Not. R astr. Soc, 185, 5P.Google Scholar
  14. Terlevich, R. & Melnick, J. 1985. Mon. Not. R astr. Soc, 213, 841.ADSGoogle Scholar
  15. Terlevich, R., Melnick, J. & Moles, M. 1987. In Observational Evidence of Activity in Galaxies, Eds. E. Ye. Khachikyian, K.J Fricke & J. Melnick, Reidel Dordrech Pub., p. 499.Google Scholar
  16. Wheeler, J.C. 1980. Astrophys. J, 301, 790.ADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • M. L. García-Vargas
    • 1
  • A. I. Díaz
    • 1
  • R. Terlevich
    • 2
  • E. Terlevich
    • 2
  1. 1.Depto. de Física TeóricaUniv. Autónoma de MadridMadridSpain
  2. 2.Royal Greenwich ObservatoryHailshamUK

Personalised recommendations