Skip to main content

Solar Opacities Constrained by Solar Neutrinos and Solar Oscillations

  • Conference paper
Inside the Sun

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 159))

Abstract

This review discusses the current situation for opacities at the solar center, the solar surface, and for the few million kelvin temperatures that occur below the convection zone. The solar center conditions are important because they are crucial for the neutrino production, which continues to be predicted about 4 times that observed. The main extinction effects there are free-free photon absorption in the electric fields of the hydrogen, helium and the CNO atoms, free electron scattering of photons, and the bound-free and bound-bound absorption of photons by iron atoms with two electrons in the is bound level. An assumption that the iron is condensed-out below the convection zone, and the opacity in the central regions is thereby reduced, results in about a 25 percent reduction in the central opacity but only a 5 percent reduction at the base of the convection zone. Furthermore, the p-mode solar oscillations are changed with this assumption, and do not fit the observed ones as well as for standard models. A discussion of the large effective opacity reduction by weakly interacting massive particles (WIMPs or Cosmions) also results in poor agreement with observed p-mode oscillation frequencies. The much larger opacities for the solar surface layers from the Los Alamos Astrophysical Opacity Library instead of the widely used Cox and Tabor values show small improvements in oscillation frequency predictions, but the largest effect is in the discussion of p-mode stability. Solar oscillation frequencies can serve as an opacity experiment for the temperatures and densities, respectively, of a few million kelvin and between 0.1 and 10 g/cm 3. Current oscillation frequency calculations indicate that possibly the Opacity Library values need an increase of typically 15 percent just at the bottom of the convection zone at 3x106K. Opacities have uncertainties at the photosphere and deeper than the convection zone ranging from 10 to 25 percent. The equation of state that supplies data for the opacity calculations fortunately has pressure uncertainties of only about 1 percent, but opacity uncertainties will always be much larger. A discussion is given about opacity experiments that the stars provide. Opacities in the envelopes of the Hyades G stars, the Cepheids, δ Scuti variables, and the β Cephei variables indicate that significantly larger opacities, possibly caused by iron lines, seem to be required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aller, L. H. 1961. The Abundance of the Elements, ( New York: Interscience Publishers).

    Google Scholar 

  • Andreasen G. K., 1988. Stellar consequences of enhanced metal opacity. I. An attractive solution of the Cepheid period ratio discrepancies. Astron. Astrophys., 201, 72.

    ADS  Google Scholar 

  • Andreasen, G. K. and Petersen, J. O. 1988. Double mode pulsating stars and opacity changes. Astron. Astrophys., 192, L4.

    ADS  Google Scholar 

  • Bahcall, J. N. and Ulrich, R. K. 1988. Solar models, neutrino experiments, and helioseismology. Rev. Mod. Phys., 60, 297.

    Article  ADS  Google Scholar 

  • Balmford, N. J. and Gough, D. O. 1988. Radiative and convective influences on stellar pulsational stability. Seismology of the Sun and Sun-Like Stars, ESA SP 286, ed. E. J. Rolfe, p. 47.

    Google Scholar 

  • Bethe, H. A. 1986. Possible explanation of the solar neutrino puzzle. Phys. Rev. Lett., 56, 1305.

    Article  ADS  Google Scholar 

  • Boercker, D. B. 1987. Collective effects on Thomson Scattering in the solar interior. Ap. J. Lett., 316, L98.

    Article  ADS  Google Scholar 

  • Christensen-Dalsgaard, J., Duvall, T. L., Gough, D. O., Harvey, J. W., and Rhodes, E. J. 1985. Speed of sound in the solar interior. Nature, 315, 378.

    Article  ADS  Google Scholar 

  • Christensen-Dalsgaard, J. and Frandsen, S. 1983. Radiative transfer and solar oscillations. Solar Physics, 82, 165.

    Article  ADS  Google Scholar 

  • Cox, A. N. 1965. Stellar absorption coefficients and opacities. Stars and Stellar Systems, 8, eds. L. H. Aller and D. B. McLaughlin ( Chicago: University of Chicago Press ) p. 195.

    Google Scholar 

  • Cox, A. N. 1983. Stability problems with an application to early type stars. presented at Swiss Society of Astrophysics and Astronomy, Saas Fee, Switzerland, 1983, Mar 21–26.

    Google Scholar 

  • Cox, A. N., Guzik, J. A. and Kidman, R. B. 1989. Oscillations of solar models with internal element diffusion. Ap. J., 342, 1187.

    Article  ADS  Google Scholar 

  • Cox, A. N., Guzik, J. A., and Raby, S. 1989. Oscillations of condensed-out iron and cosmion solar models. Ap. J., submitted.

    Google Scholar 

  • Cox, A. N. and Stewart, J. N. 1970a. Rosseland opacity tables for population I compositions. Ap. J. Suppl., 19, 243.

    Article  ADS  Google Scholar 

  • Cox, A. N. and Stewart, J. N. 1970b. Rosseland opacity tables for population II compositions. Ap. J. Suppl., 19, 261.

    Article  ADS  Google Scholar 

  • Cox, A. N. and Tabor, J. E. 1976. Rosseland opacity tables for 40 stellar mixtures. Ap. J. Suppl., 31, 271.

    Article  ADS  Google Scholar 

  • Davis, R. 1986. Report to the Seventh Workshop on Grand Unification, ( ICORBAN ‘86, Toyoma, Japan ), p. 237.

    Google Scholar 

  • Dearborn, D. S. P., Marx, G., and Ruff, I. 1987. A classical solution for the solar neutrino puzzle. Prog. Theo. Phys., 77, 12.

    Article  ADS  Google Scholar 

  • DeLuca, E. E., Griest, K., Rosner, R., and Wang, J. 1989. On the effects of cosmions upon the structure and evolution of very low mass stars. Ap. J. Lett., submitted.

    Google Scholar 

  • Diesendorf, M. O. 1970. Electron correlations and solar neutrino counts. Nature, 227, 266.

    Article  ADS  Google Scholar 

  • Diesendorf, M. O. and Ninham 1969. The effect of quantum correlations on electron-scattering opacities. Ap. J., 156, 1069.

    Article  ADS  Google Scholar 

  • Eggleton, P. P., Faulkner, J. and Flannery, B. P. 1973. An approximate equation of state fur stellar material. Astron. Astrophys., 23, 325.

    ADS  Google Scholar 

  • Gilliland, R. L. and Däppen, W. 1988. Oscillations in solar models with weakly interacting massive particles. Ap. J. 324, 1153.

    Article  ADS  Google Scholar 

  • Huebner, W. F. 1978. Proc. Informal Conf. on Status and Future of Solar Neutrino Research, BNL Rept. 50879, ed. G. Friedlander vol 1, p. 107.

    Google Scholar 

  • Huebner, W. F. 1986. Atomic and radiative processes in the solar interior. Physics of the Sun, (Dordrecht: D. Reidel Publishing Company), 1, p. 33.

    Google Scholar 

  • Huebner, W. F., Merts, A. L., Magee, N. H., and Argo, M. F. 1977. Astrophysical Opacity Library, Los Alamos Scientific Laboratory Report, LA-6760-M.

    Google Scholar 

  • Iben, I. 1965. Stellar evolution I. The approach to the main sequence. Ap. J., 141, 993.

    Article  ADS  Google Scholar 

  • Iben, I. 1975. Thermal pulses; p-capture, a-capture s-process nucleosynthesis; and convective mixing in a star of intermediate mass. Ap. J., 196, 546.

    ADS  Google Scholar 

  • Iglesias, C. A., Rogers, F. J., and Wilson, B. G. 1987. Reexamination of the metal contribution to astrophysical opacity. Ap. J. Lett., 322, L45.

    Article  ADS  Google Scholar 

  • Jiménez, A., Pallé P. L., Pérez, J. C., Régulo, C., Roca Cortés, T., Isaak, G. R., McLeod, C. P., and van der Raay, B. B. 1988. The solar oscillations spectrum and the solar cycle. Advances in Helio-and Asteroseismology, IAU Colloquium 123, eds. J. Christensen-Dalsgaard and S. Frandsen, p. 208.

    Google Scholar 

  • Kidman, R. B. and Cox, A. N. 1984. The stability of the low degree five minute solar oscillations. in Solar Seismology from Space, eds. R. K. Ulrich, J. Harvey, E. J. Rhodes, and J. Toomre, ( NASA Pub 8484 ), p. 335.

    Google Scholar 

  • Korzennik, S. G. and Ulrich, R. K. 1989. Seismic analysis of the solar interior I. Can opacity changes improve the theoretical frequencies? Ap. J., 339, 1144.

    Article  ADS  Google Scholar 

  • Magee, N. H., Merts, A. L., and Huebner, W. F., 1984. Is the metal contribution to the astrophysical opacity incorrect? Ap. J., 283, 264.

    Article  ADS  Google Scholar 

  • Rosen, S. P. and Gelb, J. M. 1986. Mikheyev-Smirnov-Wolfenstein enhancement of oscillations as a possible solution to the solar neutrino problem. Phys. Rev., D34, 969.

    Article  MathSciNet  ADS  Google Scholar 

  • Ross, J. E. and Aller, L. H. 1976. The chemical composition of the sun. Science, 191, 1223.

    Article  ADS  Google Scholar 

  • Rozsnyai, B. F. 1989. Bracketing the astrophysical opacities for the King IVa mixture. Ap. J., 341, 414.

    Article  ADS  Google Scholar 

  • Simon, N. R. 1982. A plea for reexamining heavy element opacities in stars. Ap. J. Lett., 260, L87.

    Article  ADS  Google Scholar 

  • Spergel, D. N. and Press, W. H. 1985. Effect of hypothetical, weakly interacting, massive particles on energy transport in the solar interior. Ap. J., 294, 663.

    Article  ADS  Google Scholar 

  • Stellingwerf, R. F. 1975a. Modal stability of RR Lyrae stars. Ap. J., 195, 441.

    Article  ADS  Google Scholar 

  • Stellingwerf, R. F. 1975b. Nonlinear effects in double-mode Cepheids. Ap. J., 199, 705.

    Article  ADS  Google Scholar 

  • Stringfellow, G. S., Swenson, F. J., and Faulkner, J. 1987. Is there a classical Hyades lithium problem? BAAS, 19, 1020.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this paper

Cite this paper

Cox, A.N. (1990). Solar Opacities Constrained by Solar Neutrinos and Solar Oscillations. In: Berthomieu, G., Cribier, M. (eds) Inside the Sun. Astrophysics and Space Science Library, vol 159. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0541-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0541-2_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6730-0

  • Online ISBN: 978-94-009-0541-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics