Solar Opacities Constrained by Solar Neutrinos and Solar Oscillations

  • Arthur N. Cox
Part of the Astrophysics and Space Science Library book series (ASSL, volume 159)


This review discusses the current situation for opacities at the solar center, the solar surface, and for the few million kelvin temperatures that occur below the convection zone. The solar center conditions are important because they are crucial for the neutrino production, which continues to be predicted about 4 times that observed. The main extinction effects there are free-free photon absorption in the electric fields of the hydrogen, helium and the CNO atoms, free electron scattering of photons, and the bound-free and bound-bound absorption of photons by iron atoms with two electrons in the is bound level. An assumption that the iron is condensed-out below the convection zone, and the opacity in the central regions is thereby reduced, results in about a 25 percent reduction in the central opacity but only a 5 percent reduction at the base of the convection zone. Furthermore, the p-mode solar oscillations are changed with this assumption, and do not fit the observed ones as well as for standard models. A discussion of the large effective opacity reduction by weakly interacting massive particles (WIMPs or Cosmions) also results in poor agreement with observed p-mode oscillation frequencies. The much larger opacities for the solar surface layers from the Los Alamos Astrophysical Opacity Library instead of the widely used Cox and Tabor values show small improvements in oscillation frequency predictions, but the largest effect is in the discussion of p-mode stability. Solar oscillation frequencies can serve as an opacity experiment for the temperatures and densities, respectively, of a few million kelvin and between 0.1 and 10 g/cm 3. Current oscillation frequency calculations indicate that possibly the Opacity Library values need an increase of typically 15 percent just at the bottom of the convection zone at 3x106K. Opacities have uncertainties at the photosphere and deeper than the convection zone ranging from 10 to 25 percent. The equation of state that supplies data for the opacity calculations fortunately has pressure uncertainties of only about 1 percent, but opacity uncertainties will always be much larger. A discussion is given about opacity experiments that the stars provide. Opacities in the envelopes of the Hyades G stars, the Cepheids, δ Scuti variables, and the β Cephei variables indicate that significantly larger opacities, possibly caused by iron lines, seem to be required.


Convection Zone Solar Neutrino Solar Model Neutrino Flux Iron Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aller, L. H. 1961. The Abundance of the Elements, ( New York: Interscience Publishers).Google Scholar
  2. Andreasen G. K., 1988. Stellar consequences of enhanced metal opacity. I. An attractive solution of the Cepheid period ratio discrepancies. Astron. Astrophys., 201, 72.ADSGoogle Scholar
  3. Andreasen, G. K. and Petersen, J. O. 1988. Double mode pulsating stars and opacity changes. Astron. Astrophys., 192, L4.ADSGoogle Scholar
  4. Bahcall, J. N. and Ulrich, R. K. 1988. Solar models, neutrino experiments, and helioseismology. Rev. Mod. Phys., 60, 297.ADSCrossRefGoogle Scholar
  5. Balmford, N. J. and Gough, D. O. 1988. Radiative and convective influences on stellar pulsational stability. Seismology of the Sun and Sun-Like Stars, ESA SP 286, ed. E. J. Rolfe, p. 47.Google Scholar
  6. Bethe, H. A. 1986. Possible explanation of the solar neutrino puzzle. Phys. Rev. Lett., 56, 1305.ADSCrossRefGoogle Scholar
  7. Boercker, D. B. 1987. Collective effects on Thomson Scattering in the solar interior. Ap. J. Lett., 316, L98.ADSCrossRefGoogle Scholar
  8. Christensen-Dalsgaard, J., Duvall, T. L., Gough, D. O., Harvey, J. W., and Rhodes, E. J. 1985. Speed of sound in the solar interior. Nature, 315, 378.ADSCrossRefGoogle Scholar
  9. Christensen-Dalsgaard, J. and Frandsen, S. 1983. Radiative transfer and solar oscillations. Solar Physics, 82, 165.ADSCrossRefGoogle Scholar
  10. Cox, A. N. 1965. Stellar absorption coefficients and opacities. Stars and Stellar Systems, 8, eds. L. H. Aller and D. B. McLaughlin ( Chicago: University of Chicago Press ) p. 195.Google Scholar
  11. Cox, A. N. 1983. Stability problems with an application to early type stars. presented at Swiss Society of Astrophysics and Astronomy, Saas Fee, Switzerland, 1983, Mar 21–26.Google Scholar
  12. Cox, A. N., Guzik, J. A. and Kidman, R. B. 1989. Oscillations of solar models with internal element diffusion. Ap. J., 342, 1187.ADSCrossRefGoogle Scholar
  13. Cox, A. N., Guzik, J. A., and Raby, S. 1989. Oscillations of condensed-out iron and cosmion solar models. Ap. J., submitted.Google Scholar
  14. Cox, A. N. and Stewart, J. N. 1970a. Rosseland opacity tables for population I compositions. Ap. J. Suppl., 19, 243.ADSCrossRefGoogle Scholar
  15. Cox, A. N. and Stewart, J. N. 1970b. Rosseland opacity tables for population II compositions. Ap. J. Suppl., 19, 261.ADSCrossRefGoogle Scholar
  16. Cox, A. N. and Tabor, J. E. 1976. Rosseland opacity tables for 40 stellar mixtures. Ap. J. Suppl., 31, 271.ADSCrossRefGoogle Scholar
  17. Davis, R. 1986. Report to the Seventh Workshop on Grand Unification, ( ICORBAN ‘86, Toyoma, Japan ), p. 237.Google Scholar
  18. Dearborn, D. S. P., Marx, G., and Ruff, I. 1987. A classical solution for the solar neutrino puzzle. Prog. Theo. Phys., 77, 12.ADSCrossRefGoogle Scholar
  19. DeLuca, E. E., Griest, K., Rosner, R., and Wang, J. 1989. On the effects of cosmions upon the structure and evolution of very low mass stars. Ap. J. Lett., submitted.Google Scholar
  20. Diesendorf, M. O. 1970. Electron correlations and solar neutrino counts. Nature, 227, 266.ADSCrossRefGoogle Scholar
  21. Diesendorf, M. O. and Ninham 1969. The effect of quantum correlations on electron-scattering opacities. Ap. J., 156, 1069.ADSCrossRefGoogle Scholar
  22. Eggleton, P. P., Faulkner, J. and Flannery, B. P. 1973. An approximate equation of state fur stellar material. Astron. Astrophys., 23, 325.ADSGoogle Scholar
  23. Gilliland, R. L. and Däppen, W. 1988. Oscillations in solar models with weakly interacting massive particles. Ap. J. 324, 1153.ADSCrossRefGoogle Scholar
  24. Huebner, W. F. 1978. Proc. Informal Conf. on Status and Future of Solar Neutrino Research, BNL Rept. 50879, ed. G. Friedlander vol 1, p. 107.Google Scholar
  25. Huebner, W. F. 1986. Atomic and radiative processes in the solar interior. Physics of the Sun, (Dordrecht: D. Reidel Publishing Company), 1, p. 33.Google Scholar
  26. Huebner, W. F., Merts, A. L., Magee, N. H., and Argo, M. F. 1977. Astrophysical Opacity Library, Los Alamos Scientific Laboratory Report, LA-6760-M.Google Scholar
  27. Iben, I. 1965. Stellar evolution I. The approach to the main sequence. Ap. J., 141, 993.ADSCrossRefGoogle Scholar
  28. Iben, I. 1975. Thermal pulses; p-capture, a-capture s-process nucleosynthesis; and convective mixing in a star of intermediate mass. Ap. J., 196, 546.ADSGoogle Scholar
  29. Iglesias, C. A., Rogers, F. J., and Wilson, B. G. 1987. Reexamination of the metal contribution to astrophysical opacity. Ap. J. Lett., 322, L45.ADSCrossRefGoogle Scholar
  30. Jiménez, A., Pallé P. L., Pérez, J. C., Régulo, C., Roca Cortés, T., Isaak, G. R., McLeod, C. P., and van der Raay, B. B. 1988. The solar oscillations spectrum and the solar cycle. Advances in Helio-and Asteroseismology, IAU Colloquium 123, eds. J. Christensen-Dalsgaard and S. Frandsen, p. 208.Google Scholar
  31. Kidman, R. B. and Cox, A. N. 1984. The stability of the low degree five minute solar oscillations. in Solar Seismology from Space, eds. R. K. Ulrich, J. Harvey, E. J. Rhodes, and J. Toomre, ( NASA Pub 8484 ), p. 335.Google Scholar
  32. Korzennik, S. G. and Ulrich, R. K. 1989. Seismic analysis of the solar interior I. Can opacity changes improve the theoretical frequencies? Ap. J., 339, 1144.ADSCrossRefGoogle Scholar
  33. Magee, N. H., Merts, A. L., and Huebner, W. F., 1984. Is the metal contribution to the astrophysical opacity incorrect? Ap. J., 283, 264.ADSCrossRefGoogle Scholar
  34. Rosen, S. P. and Gelb, J. M. 1986. Mikheyev-Smirnov-Wolfenstein enhancement of oscillations as a possible solution to the solar neutrino problem. Phys. Rev., D34, 969.MathSciNetADSCrossRefGoogle Scholar
  35. Ross, J. E. and Aller, L. H. 1976. The chemical composition of the sun. Science, 191, 1223.ADSCrossRefGoogle Scholar
  36. Rozsnyai, B. F. 1989. Bracketing the astrophysical opacities for the King IVa mixture. Ap. J., 341, 414.ADSCrossRefGoogle Scholar
  37. Simon, N. R. 1982. A plea for reexamining heavy element opacities in stars. Ap. J. Lett., 260, L87.ADSCrossRefGoogle Scholar
  38. Spergel, D. N. and Press, W. H. 1985. Effect of hypothetical, weakly interacting, massive particles on energy transport in the solar interior. Ap. J., 294, 663.ADSCrossRefGoogle Scholar
  39. Stellingwerf, R. F. 1975a. Modal stability of RR Lyrae stars. Ap. J., 195, 441.ADSCrossRefGoogle Scholar
  40. Stellingwerf, R. F. 1975b. Nonlinear effects in double-mode Cepheids. Ap. J., 199, 705.ADSCrossRefGoogle Scholar
  41. Stringfellow, G. S., Swenson, F. J., and Faulkner, J. 1987. Is there a classical Hyades lithium problem? BAAS, 19, 1020.ADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Arthur N. Cox
    • 1
  1. 1.Theoretical DivisionLos Alamos National LaboratoryUSA

Personalised recommendations