Inside the Sun pp 415-423 | Cite as

Angular Momentum Transport and Magnetic Fields in the Solar Interior

  • H. C. Spruit
Part of the Astrophysics and Space Science Library book series (ASSL, volume 159)


The possible mechanisms of angular momentum transport in convectively stable regions of a star are reviewed, with emphasis on transport by magnetic torques. The strength and configuration of the field in such layers is quite uncertain, because it is not known if the field can reach a dynamically stable configuration. A lower limit to the field strength is obtained by assuming that the field is always dynamically unstable, and decaying at the (rotation modified) dynamical time scale. The present field in the sun would then be of the order 1G, with poloidal and toroidal components of similar strength. The differential rotation in the core, if due only to the solar wind torque, would be very small for this field strength, and instead would more likely be governed by magnetic coulpling to the differential rotation of the convection zone. If small scale hydrodynamic transport mechanisms are present, their properties would also be influenced by a field of this strength.


Rotation Rate Convection Zone Differential Rotation Shear Instability Internal Gravity Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baglin, A., Morel, P.J., Schatzman, E. 1985, Astron. Astrophys., 149, 309ADSGoogle Scholar
  2. Berger, M.A. 1986, Geophys. Astrophys. Fluid Dyn., 34, 256ADSGoogle Scholar
  3. Blandford, R.D., Payne, D.G. 1982, Mon. Not. R. astron. Soc., 199, 883ADSzbMATHGoogle Scholar
  4. Benton, E.R., Loper, D.E. 1970, J. Fluid Mech., 43, 75Google Scholar
  5. Benton, E.R., Clark, D.E. 1974, Ann. Rev. Fluid Mech. 6, 257ADSCrossRefGoogle Scholar
  6. Brown, T.M. Christensen-Dalsgaard, J., Dziembowski, W.A., Goode, P., Gough, D.O., Morrow, C.A. 1989. Astrophys., J., 343526ADSCrossRefGoogle Scholar
  7. Duvall, T.L. Jr., Harvey, J.W. 1984, Nature, 310, 19ADSCrossRefGoogle Scholar
  8. Goldreich, P., Nicholson, P. 1989, preprintGoogle Scholar
  9. Heyvaerts, J., Priest, E.R. 1983, Astron. Astrophys., 117, 220ADSzbMATHGoogle Scholar
  10. Huriburt, N.E., Toomre J., Massaguer, J.M. 1986, Astrophys., J., 311, 563ADSCrossRefGoogle Scholar
  11. Ionson, J.A. 1978, Astrophys., J., 226, 650ADSCrossRefGoogle Scholar
  12. Königl, A. 1989, Astrophys., J., 342, 208ADSCrossRefGoogle Scholar
  13. Lovelace, R.V.E., Wang, J.C.L., Sulkanen, M.E. 1987, Astrophys., J., 315, 504ADSCrossRefGoogle Scholar
  14. Mestel, L. 1984, Astron. Nachr. 305, 301ADSCrossRefGoogle Scholar
  15. Mestel, L. Weiss, N.O. 1987, Mon. Not. R. astron. Soc., 226, 123ADSGoogle Scholar
  16. Moreno Insertis, F. 1986, Astron. Astrophys., 166, 291ADSzbMATHGoogle Scholar
  17. Osaki, Y. 1982, Publ. Astr. Soc. Japan, 34, 257ADSGoogle Scholar
  18. Pitts, E., Tayler, R.J. 1985, Mon. Not. R. astron. Soc., 216, 139ADSGoogle Scholar
  19. Pizzo, V., Schwenn, R., Marsch, E., Rosenbauer, H., Mühlhäuser, K.-H., Neubauer, F.M. 1983, Astrophys., J., 271, 335ADSCrossRefGoogle Scholar
  20. Press, W.H. 1981. Astrophys., J., 245, 111MathSciNetCrossRefGoogle Scholar
  21. Pudritz, R.E., Norman, C.A. 1983, Astrophys., J., 274, 677ADSCrossRefGoogle Scholar
  22. Rodler, K.-H., 1986, preprintGoogle Scholar
  23. Sakurai, T. 1975, Mon. Not. R. astron. Soc., 171, 35ADSGoogle Scholar
  24. Schatzman, E., 1962, Ann. Astrophys., 222, 317Google Scholar
  25. Schmitt, J.H.M.M., Rosner, R., Bohn, H.U. 1984, Astrophys., J., 282316ADSCrossRefGoogle Scholar
  26. Soderblom, D. 1988 in The Impact ofvery high S/N etc., eds. G. Cayrel de Strobel and M. Spite (IAU Symp. 132), Kluwer, Dordrecht, p381Google Scholar
  27. Spruit, H.C. 1987a, in it Physical Processes on Comets, Stars and Active Galaxies, eds. W. Hillebrandt, E. Meyer-Hofmeister and H.-C. Thomas, Springer, Heidelberg, p78Google Scholar
  28. Spruit, H.C., 1987b, in The Internal Solar Angular Velocity, eds. B.R. Durney and S. Sofia, Reidel, Dordrecht, p185Google Scholar
  29. Spruit, H.C., Roberts, B. 1983, Nature, 304, 401ADSCrossRefGoogle Scholar
  30. Spruit, H.C., Knobloch, E., Roxburgh, I.W. 1983, Nature, 304, 320CrossRefGoogle Scholar
  31. Tassoul, J.-L. 1989, Astron. Astrophys. Google Scholar
  32. Tayler, R.J., 1980, Mon. Not. R. astron. Soc., 191, 151ADSGoogle Scholar
  33. Vauclair, S. 1988, Astrophys., J., 335, 971ADSCrossRefGoogle Scholar
  34. van Assche, W., Tayler, R.J. Goosens, M. 1982, Astron. Astrophys., 109, 166ADSzbMATHGoogle Scholar
  35. van Ballegooijen, A.A. 1982. Astron. Astrophys., 113, 99ADSzbMATHGoogle Scholar
  36. Woltjer, L. 1958, Proc. Natl. Acad. Sci. USA 44, 489MathSciNetADSzbMATHCrossRefGoogle Scholar
  37. Zahn, J.-P. 1974, in Stellar Instability and Evolution, eds. P. Ledoux, A. Noels and R.W. Rogers, Reidel, Dordrecht, p185Google Scholar
  38. Zahn, J.-P. 1983, in Astrophysical Processes in upper Main Sequence Stars, Geneva Observatory, Switzerland, p225Google Scholar
  39. Zahn, J.-P. 1977, Astron. Astrophys., 57, 383ADSGoogle Scholar
  40. Zeldovich, Ya. B., Ruzmaikin, A.A., Sokoloff, D.D. 1983, Magnetic Fields in Astrophysics, Gordon And Breach, N.Y.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • H. C. Spruit
    • 1
  1. 1.Max Planck Institut für Physik und AstrophysikGarchingWest Germany

Personalised recommendations