Ends of Infinite Graphs, Potential Theory and Electrical Networks

  • M. A. Picardello
  • W. Woess
Part of the NATO ASI Series book series (ASIC, volume 301)


We give an introductory survey on concepts and results concerning harmonic functions on infinite graphs with the goal of describing the interplay between graph structure and potential theory. A particular emphasis is on the connection between the Martin boundary for harmonic functions and the space of ends of the underlying graph. A variety of results is described.


Random Walk Harmonic Function Transition Operator Cayley Graph Fuchsian Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Azencott and P. Cartier: Martin boundaries of random walks on locally compact groups. Proc. 6th Berkeley Symposium on Math. Statistics and Probability3 (1972), 87 – 129.MathSciNetGoogle Scholar
  2. [2]
    J. R. Baxter: Restricted mean values and harmonic functions. Trans. Amer. Math. Soc.167 (1972), 451 – 463.CrossRefMathSciNetGoogle Scholar
  3. [3]
    J. R. Baxter: Harmonic functions and mass cancellation. Trans. Amer. Math. Soc.245 (1978), 375 – 384.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    P. Cartier: Fonction harmoniques sur un arbre. Symposia Math. 9 (1972), 203 – 270.Google Scholar
  5. [5]
    G. Choquet and J. Deny: Sur l’équation de convolution µ= µ* σ. C.R. Acad. Sci. Paris250 (1960), 799 – 801.zbMATHMathSciNetGoogle Scholar
  6. [6]
    Y. Derriennic: Marche aléatoire sur le groupe libre et frontière de Martin. Zeitschr. Wahrscheinlichkeitstheorie Verw. Geb.32 (1975), 261 – 276.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    J. L. Doob: Discrete potential theory and boundaries. J. Math. Mech8 (1959), 433 – 458.zbMATHMathSciNetGoogle Scholar
  8. [8]
    J. L. Doob, J. L. Snell and R. E. Williamson: Application of boundary theory to sums of independent random variables. Contributions to Probability and Statistics, Stanford Univ. Press (1960), 182 – 197.Google Scholar
  9. [9]
    P. Doyle and J. L. Snell: Random Walks and Electric Networks. Carus Math. Monographs, Math. Assoc. Amer., 1984.Google Scholar
  10. [10]
    E. B. Dynkin and M. B. Malyutov: Random walks on groups with a finite number of generators. Soviet Math. Doklady2 (1961), 399 – 402.zbMATHGoogle Scholar
  11. [11]
    W. Feller: Boundaries induced by nonnegative matrics. Trans. Amer. Math. Soc.83 (1956), 19 – 54.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    H. Freudenthal: Über die Enden diskreter Räume und Gruppen. Comment. Math. Helv.17 (1944), 1 – 38.CrossRefMathSciNetGoogle Scholar
  13. [13]
    H. Furstenberg: Random walks and discrete subgroups of Lie groups. Advances in Probability and Related Topics, Vol. 1 (P. Ney, ed.), Dekker, New York (1971), 1 – 63.Google Scholar
  14. [14]
    R. Halin: Über unendliche Wege in Graphen. Math. Annalen157 (1964), 125 – 137.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    D. Heath: Functions possessing restricted mean value properties. Proc. Amer. Math. Soc.41 (1973), 588 – 595.zbMATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    P. L. Hennequin: Processus de Markoff en cascade. Ann. Inst. H. Poincaré18 (1963), 109 – 196.zbMATHMathSciNetGoogle Scholar
  17. [17]
    H. A. Jung: Connectivity in infinite graphs. Studies in Pure Math. (L. Mirsky, ed.), Academic Press, New York (1971), 137 – 143.Google Scholar
  18. [18]
    J. G. Kemeny, J. L. Snell and A. W. Knapp: Denumerable Markov Chains. 2nd ed., Springer, New York — Heidelberg — Berlin, 1976.zbMATHGoogle Scholar
  19. [19]
    V. A. Kaimanovich and A. M. Vershik: Random walks on discrete groups: boundary and entropy. Annals Probab. 11 (1983), 457 – 490.zbMATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    T. Lyons: A simple criterion for transience of a reversible Markov chain. Annals Probab. 11 (1983), 393 – 402.zbMATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    W. Magnus: Noneuclidean Tesselations and their Groups. Academic Press, New York, 1974.zbMATHGoogle Scholar
  22. [22]
    C. St. J. A. Nash-Williams: Random walks and electric currents in networks. Proc. Cambridge Phil. Soc.55 (1959), 181 – 194.zbMATHCrossRefGoogle Scholar
  23. [23]
    P. Ney and F. Spitzer: The Martin boundary for random walk. Trans. Amer. Math. Soc.121 (1966), 116 – 132.zbMATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    R. R. Phelps: Lectures on Choquet’s Theorem. Van Nostrand Math. Studies, Vol. 7, New York, 1966.Google Scholar
  25. [25]
    M. A. Picardello and W. Woess: Martin boundaries of random walks: ends of trees and groups. Trans. Amer. Math. Soc.302 (1987), 185 – 205.zbMATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    M. A. Picardello and W. Woess: Harmonic functions and ends of graphs. Proc. Edinburgh Math. Soc.31 (1988), 457 – 461.zbMATHCrossRefMathSciNetGoogle Scholar
  27. M. A. Picardello and W. Woess: A converse to the mean value property on homogeneous trees. Trans. Amer. Math. Soc in printGoogle Scholar
  28. [28]
    M. A. Picardello and P. Sjögren: Preprint, Univ. Maryland (1988).Google Scholar
  29. [29]
    N. Polat: Aspects topologiques de la séparation dans les graphes infinis. Math. Zeitschr.165 (1979), 73 – 100.CrossRefMathSciNetGoogle Scholar
  30. [30]
    C. Series: Martin boundaries of random walks on Fuchsian groups. Israel J. Math.44 (1983), 221 – 242.zbMATHCrossRefMathSciNetGoogle Scholar
  31. [31]
    F. Spitzer: Principles of Random Walk. Van Nostrand, Princeton, 1974.Google Scholar
  32. [32]
    J. C. Taylor: The Martin boundaries of equivalent sheaves. Ann. Inst. Fourier20 (1970), 433 – 456.zbMATHCrossRefGoogle Scholar
  33. C. Thomassen: Resistances and currents in infinite electrical networks. J. Combin. Theory Ser. B in print.Google Scholar
  34. [34]
    W. Veech: A zero-one law for a class of random walks and a converse to Gauss’ mean value theorem. Annals Math. 97 (1973), 189 – 216.zbMATHCrossRefMathSciNetGoogle Scholar
  35. [35]
    W. Veech: A converse to the mean value theorem for harmonic functions. Amer. J. Math97 (1975), 1007 – 1027.CrossRefMathSciNetGoogle Scholar
  36. [36]
    W. Woess: A description of the Martin boundary for nearest neighbour random walks on free products. “Probability Measures on Groups”, Springer Led. Notes in Math.1210 (1986), 203 – 215.MathSciNetGoogle Scholar
  37. [37]
    W. Woess: Harmonic functions on infinite graphs. Rendiconti Sera. Mat. Fis. Milano56 (1986), 53 – 63.MathSciNetGoogle Scholar
  38. W. Woess: Graphs and groups with tree-like properties. J. Combin. Theory Ser. B in print.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • M. A. Picardello
    • 1
  • W. Woess
    • 2
    • 3
  1. 1.Dipartimento di Matematica Pura e ApplicataUniversità dell’AquilaL’AquilaItaly
  2. 2.Institut für Mathematik und Angewandte GeometrieMontanuniversität LeobenLeobenAustria
  3. 3.Dipartimento di MatematicaUniversità di MilanoMilanoItaly

Personalised recommendations