Skip to main content

Ends of Infinite Graphs, Potential Theory and Electrical Networks

  • Chapter
Book cover Cycles and Rays

Part of the book series: NATO ASI Series ((ASIC,volume 301))

Abstract

We give an introductory survey on concepts and results concerning harmonic functions on infinite graphs with the goal of describing the interplay between graph structure and potential theory. A particular emphasis is on the connection between the Martin boundary for harmonic functions and the space of ends of the underlying graph. A variety of results is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Azencott and P. Cartier: Martin boundaries of random walks on locally compact groups. Proc. 6th Berkeley Symposium on Math. Statistics and Probability3 (1972), 87 – 129.

    MathSciNet  Google Scholar 

  2. J. R. Baxter: Restricted mean values and harmonic functions. Trans. Amer. Math. Soc.167 (1972), 451 – 463.

    Article  MathSciNet  Google Scholar 

  3. J. R. Baxter: Harmonic functions and mass cancellation. Trans. Amer. Math. Soc.245 (1978), 375 – 384.

    Article  MATH  MathSciNet  Google Scholar 

  4. P. Cartier: Fonction harmoniques sur un arbre. Symposia Math. 9 (1972), 203 – 270.

    Google Scholar 

  5. G. Choquet and J. Deny: Sur l’équation de convolution µ= µ* σ. C.R. Acad. Sci. Paris250 (1960), 799 – 801.

    MATH  MathSciNet  Google Scholar 

  6. Y. Derriennic: Marche aléatoire sur le groupe libre et frontière de Martin. Zeitschr. Wahrscheinlichkeitstheorie Verw. Geb.32 (1975), 261 – 276.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. L. Doob: Discrete potential theory and boundaries. J. Math. Mech8 (1959), 433 – 458.

    MATH  MathSciNet  Google Scholar 

  8. J. L. Doob, J. L. Snell and R. E. Williamson: Application of boundary theory to sums of independent random variables. Contributions to Probability and Statistics, Stanford Univ. Press (1960), 182 – 197.

    Google Scholar 

  9. P. Doyle and J. L. Snell: Random Walks and Electric Networks. Carus Math. Monographs, Math. Assoc. Amer., 1984.

    Google Scholar 

  10. E. B. Dynkin and M. B. Malyutov: Random walks on groups with a finite number of generators. Soviet Math. Doklady2 (1961), 399 – 402.

    MATH  Google Scholar 

  11. W. Feller: Boundaries induced by nonnegative matrics. Trans. Amer. Math. Soc.83 (1956), 19 – 54.

    Article  MATH  MathSciNet  Google Scholar 

  12. H. Freudenthal: Über die Enden diskreter Räume und Gruppen. Comment. Math. Helv.17 (1944), 1 – 38.

    Article  MathSciNet  Google Scholar 

  13. H. Furstenberg: Random walks and discrete subgroups of Lie groups. Advances in Probability and Related Topics, Vol. 1 (P. Ney, ed.), Dekker, New York (1971), 1 – 63.

    Google Scholar 

  14. R. Halin: Über unendliche Wege in Graphen. Math. Annalen157 (1964), 125 – 137.

    Article  MATH  MathSciNet  Google Scholar 

  15. D. Heath: Functions possessing restricted mean value properties. Proc. Amer. Math. Soc.41 (1973), 588 – 595.

    Article  MATH  MathSciNet  Google Scholar 

  16. P. L. Hennequin: Processus de Markoff en cascade. Ann. Inst. H. Poincaré18 (1963), 109 – 196.

    MATH  MathSciNet  Google Scholar 

  17. H. A. Jung: Connectivity in infinite graphs. Studies in Pure Math. (L. Mirsky, ed.), Academic Press, New York (1971), 137 – 143.

    Google Scholar 

  18. J. G. Kemeny, J. L. Snell and A. W. Knapp: Denumerable Markov Chains. 2nd ed., Springer, New York — Heidelberg — Berlin, 1976.

    MATH  Google Scholar 

  19. V. A. Kaimanovich and A. M. Vershik: Random walks on discrete groups: boundary and entropy. Annals Probab. 11 (1983), 457 – 490.

    Article  MATH  MathSciNet  Google Scholar 

  20. T. Lyons: A simple criterion for transience of a reversible Markov chain. Annals Probab. 11 (1983), 393 – 402.

    Article  MATH  MathSciNet  Google Scholar 

  21. W. Magnus: Noneuclidean Tesselations and their Groups. Academic Press, New York, 1974.

    MATH  Google Scholar 

  22. C. St. J. A. Nash-Williams: Random walks and electric currents in networks. Proc. Cambridge Phil. Soc.55 (1959), 181 – 194.

    Article  MATH  Google Scholar 

  23. P. Ney and F. Spitzer: The Martin boundary for random walk. Trans. Amer. Math. Soc.121 (1966), 116 – 132.

    Article  MATH  MathSciNet  Google Scholar 

  24. R. R. Phelps: Lectures on Choquet’s Theorem. Van Nostrand Math. Studies, Vol. 7, New York, 1966.

    Google Scholar 

  25. M. A. Picardello and W. Woess: Martin boundaries of random walks: ends of trees and groups. Trans. Amer. Math. Soc.302 (1987), 185 – 205.

    Article  MATH  MathSciNet  Google Scholar 

  26. M. A. Picardello and W. Woess: Harmonic functions and ends of graphs. Proc. Edinburgh Math. Soc.31 (1988), 457 – 461.

    Article  MATH  MathSciNet  Google Scholar 

  27. M. A. Picardello and W. Woess: A converse to the mean value property on homogeneous trees. Trans. Amer. Math. Soc in print

    Google Scholar 

  28. M. A. Picardello and P. Sjögren: Preprint, Univ. Maryland (1988).

    Google Scholar 

  29. N. Polat: Aspects topologiques de la séparation dans les graphes infinis. Math. Zeitschr.165 (1979), 73 – 100.

    Article  MathSciNet  Google Scholar 

  30. C. Series: Martin boundaries of random walks on Fuchsian groups. Israel J. Math.44 (1983), 221 – 242.

    Article  MATH  MathSciNet  Google Scholar 

  31. F. Spitzer: Principles of Random Walk. Van Nostrand, Princeton, 1974.

    Google Scholar 

  32. J. C. Taylor: The Martin boundaries of equivalent sheaves. Ann. Inst. Fourier20 (1970), 433 – 456.

    Article  MATH  Google Scholar 

  33. C. Thomassen: Resistances and currents in infinite electrical networks. J. Combin. Theory Ser. B in print.

    Google Scholar 

  34. W. Veech: A zero-one law for a class of random walks and a converse to Gauss’ mean value theorem. Annals Math. 97 (1973), 189 – 216.

    Article  MATH  MathSciNet  Google Scholar 

  35. W. Veech: A converse to the mean value theorem for harmonic functions. Amer. J. Math97 (1975), 1007 – 1027.

    Article  MathSciNet  Google Scholar 

  36. W. Woess: A description of the Martin boundary for nearest neighbour random walks on free products. “Probability Measures on Groups”, Springer Led. Notes in Math.1210 (1986), 203 – 215.

    MathSciNet  Google Scholar 

  37. W. Woess: Harmonic functions on infinite graphs. Rendiconti Sera. Mat. Fis. Milano56 (1986), 53 – 63.

    MathSciNet  Google Scholar 

  38. W. Woess: Graphs and groups with tree-like properties. J. Combin. Theory Ser. B in print.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this chapter

Cite this chapter

Picardello, M.A., Woess, W. (1990). Ends of Infinite Graphs, Potential Theory and Electrical Networks. In: Hahn, G., Sabidussi, G., Woodrow, R.E. (eds) Cycles and Rays. NATO ASI Series, vol 301. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0517-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0517-7_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6719-5

  • Online ISBN: 978-94-009-0517-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics