Advertisement

Edge-Colouring Graphs and Embedding Partial Triple Systems of Even Index

  • J. W. Hilton
  • C. A. Rodger
Part of the NATO ASI Series book series (ASIC, volume 301)

Abstract

We show that a conjecture about edge-colouring certain graphs implies a conjecture about embedding partial triple systems of even index. We give some evidence to support each of these conjectures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. D. Andersen and A. J. W. Hilton, Generalized latin rectangles I: construction and decomposition, Discrete Math. 31(1980), 125 – 152.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    L. D. Andersen and A. J. W. Hilton, Generalized latin rectangles II: embedding, Discrete Math. 31(1980), 225 – 260.MathSciNetCrossRefGoogle Scholar
  3. [3]
    L. D. Andersen, A. J. W. Hilton and E. Mendelsohn, Embedding partial Steiner triple systems, Proc. London Math. Soc. (3) 41(1980), 557 – 576.MathSciNetzbMATHCrossRefGoogle Scholar
  4. A. B. Cruse, On extending incomplete latin rectangles Proc. 5th Southeastern Conf. on Combinatorics, Graph Theory and Computing (1974), 333–348 Google Scholar
  5. [5]
    A. J. W. Hilton, Hamiltonian decompositions of complete graphs, J. Combin. Theory Ser. B 36(1984), 125 – 134.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    A. J. W. Hilton, School timetables, Studies on graphs and discrete programming (P. Hansen, ed. ), North Holland (1981), 177 – 188.Google Scholar
  7. [7]
    A. J. W. Hilton, Outline latin squares, Annals of Discrete Math. 34(1987), 225 – 242.Google Scholar
  8. [8]
    A. J. W. Hilton, The reconstruction of latin squares with applications to school timetabling and to experimental design, Math. Programming Study 13(1980), 68 – 77.zbMATHGoogle Scholar
  9. [9]
    A. J. W. Hilton, Embedding partial triple systems, J. Combinatorial Math, and Combinatorial Computing2 (1987), 77 – 95.zbMATHGoogle Scholar
  10. A. J. W. Hilton and C. A. Rodger, The embedding of partial triple systems when 4 divides A, J. Combin. Theory Ser. A. To appearGoogle Scholar
  11. [11]
    A. J. W. Hilton 226 Transfer complete, htables, Annals of Discrete Math. 15(1982), 239 – 251.zbMATHGoogle Scholar
  12. [12]
    A. J. W. Hilton and C. A. Rodger, Hamiltonian decompositions of complete s-partite graphs, Discrete Math. 58(1986), 63 – 78.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    C. C. Lindner, A partial Steiner triple system of order ncan be embedded in a Steiner triple system of order 6n + 3, J. Combin. Theory Ser. A18 (1975), 349 – 351.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    C. C. Lindner and T. Evans, Finite embedding theorems for partial designs and algebras, SMS 56; Les Presses de l’Université de Montréal (1977).Google Scholar
  15. [15]
    C. St. J. A. Nash-Williams, Simple constructions for balanced incomplete block designs with block size three, J. Combin. Theory Ser. A13 (1972), 1 – 6zbMATHGoogle Scholar
  16. [16]
    C. St. J. A. Nash-Williams, Detachments of graphs and generalized Euler trails, Surveys in Combinatorics (I. Anderson, ed. ), Cambridge Univ. Press (1985), 137 – 151.Google Scholar
  17. [17]
    C. St. J. A. Nash-Williams, Amalgamations of almost regular edge-colourings of simple graphs, J. Combin. Theory Ser. B43 (1987), 322 – 342.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    C. A. Rodger and S. J. Stubbs, Embedding partial triple systems, J. Combin. Theory Ser. A44 (1987), 241 – 253.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    H. J. Ryser, A combinatorial theorem with an application to latin squares, Proc. Amer. Math. Soc.2 (1951), 550 – 552.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    S. J. Stubbs, Embedding partial triple systems, Ph.D. dissertation, Auburn University (1986).Google Scholar
  21. [21]
    C. Treash, The completion of finite incomplete Steiner triple systems with applications to loop theory, J. Combin. Theory Ser. A10 (1971), 259 – 265.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • J. W. Hilton
    • 1
  • C. A. Rodger
    • 2
  1. 1.Department of MathematicsUniversity of ReadingWhiteknights ReadingUK
  2. 2.Department of Algebra, Combinatorics and Analysis Mathematical AnnexAuburn UniversityAuburnUSA

Personalised recommendations