An Assessment of Ethylene and Carbon Dioxide Exchange in Plants

  • Bernard Grodzinski
  • Lorna Woodrow

Abstract

Current evidence indicates that ethylene is a volatile by-product of amino acid metabolism. Ethylene synthesis is linked with nitrogen metabolism through methionine and S-adenosylmethionine and as a volatile emission may serve as a non-destructive probe of amino acid turnover during photosynthesis and photorespiration. Very little is known about the relationship between ethylene and CO2 gas exchange in photosynthetic tissue. CO2 enhances the rate of ethylene release from leaf tissue in the light (1–5) and it has been proposed (3) that ethylene synthesis and/or metabolism may be moderated by photosynthetic and respiratory processes in photosynthetically competent leaves through changes in the internal CO2 concentrations.

Keywords

Ethylene Evolution Ethylene Synthesis Photosynthetic Tissue Ethylene Release Ethylene Exposure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dhawan, K.R., Bassi, P.K., and Spencer, M.S. (1981) Plant Physiol, 68, 831–4PubMedCrossRefGoogle Scholar
  2. 2.
    Grodzinski, B. (1984) Plant Physiol, 74, 871–6PubMedCrossRefGoogle Scholar
  3. 3.
    Grodzinski, B., Boesel, I., and Horton, R.F. (1982a) J Expl Bot, 33, 344–54CrossRefGoogle Scholar
  4. 4.
    Grodzinski, B., Boesel, I., and Horton, R.F. (1982b) J Expl Bot, 33, 1185–93CrossRefGoogle Scholar
  5. 5.
    Grodzinski, B., Boesel, I., and Horton, R.F. (1983) Plant Physiol, 71, 588–93PubMedCrossRefGoogle Scholar
  6. 6.
    Bishop, P.M. and Whittingham, C.P. (1968) Photosyntnetica, 2, 31–8Google Scholar
  7. 7.
    Woodrow, L., Thompson, R.G., and Grodzinski, B. (1988) J Expl Bot, 39, 667–684CrossRefGoogle Scholar
  8. 8.
    Eng, R.Y.N., Tsujita, M.J., Grodzinski, B., and Button, R.G. (1983) HortSci, 18, 878–9Google Scholar
  9. 9.
    Woodrow, L. and Grodzinski, B. (1987) J Expl Bot, 38, 1224–32CrossRefGoogle Scholar
  10. 10.
    Dutton, R.G., Jiao, J., Tsujita, M.J., and Grodzinski, B. (1988) Plant Physiol, 86, 355–8PubMedCrossRefGoogle Scholar
  11. 11.
    Woodrow, L., Jiao, J., Tsujita, M.J., and Grodzinski, B. (1989) Plant Physiol, 90, 85–90PubMedCrossRefGoogle Scholar
  12. 12.
    Kays, S.J. and Pallas Jr., J.E. (1980) Nature, 285, 51–2CrossRefGoogle Scholar
  13. 13.
    Taylor, G.E. Jr and Gunderson, C.A. (1988) Plant Physiol, 86, 85–92PubMedCrossRefGoogle Scholar
  14. 14.
    Pallaghy, C.K. and Raschke, K. (1972) Plant Physiol, 49, 275–6PubMedCrossRefGoogle Scholar
  15. 15.
    Woodrow, L. and Grodzinski, B. (1989) J Expl Bot, 40, 361–8CrossRefGoogle Scholar
  16. 16.
    Grodzinski, B. and Woodrow, L. (1989) In Biochemical and Physiological Aspects of Ethylene Production in Lower and Higher Plants (Clijsters, H., de Proft, M., Marcelle, R., and van Poucke, M., eds.), pp.271–8, Kluwer Academic, DordrechtGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Bernard Grodzinski
    • 1
  • Lorna Woodrow
    • 1
  1. 1.Dept of Horticultural ScienceUniversity of GuelphGuelphCanada

Personalised recommendations