Chilling Stress and Active-Oxygen Enzymes in Zea mays and Zea diploperennis

  • Leland S. Jahnke
  • Mark R. Hull
  • Stephen P. Long

Abstract

Photosynthesis is one of the first processes affected when chilling-sensitive plants are exposed to chilling temperatures (1,2). The symptoms of chilling damage are particularly pronounced in the presence of light and dioxygen. Many workers have shown that decreasing oxygen partial pressures from air levels produces a significant decrease in the chilling inhibition of photosynthesis (3,4,5,6). This suggests that oxygen is a third stress factor which directly interacts with chilling temperatures and light in producing inhibition of the photosynthetic mechanism.

Keywords

Superoxide Dismutase Glutathione Reductase Oxygen Partial Pressure Chilling Temperature Electron Transport Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oquist, G., Greer, D.H., Ogren, E. (1987) In Fhotoinhibition, pp.67–88, Kyle, D.J., Osmond, C.B., Arrrtzen, C.J., eds. Elsevier Science Publishers. Amsterdam New York Oxford.Google Scholar
  2. 2.
    Long, S. P. (1983) Pl. Cell and Envir. 6,345–363.Google Scholar
  3. 3.
    Abelovich, A., Shilo, M. (1974) Photochem. Photobiol. 19,379–382.CrossRefGoogle Scholar
  4. 4.
    Lindeman, W. (1979) Photosynthetica 13,175–185.Google Scholar
  5. 5.
    Powles, S., Berry J., Bjorkman, O. (1983) Plant Cell and Enivronment 6,117–123.CrossRefGoogle Scholar
  6. 6.
    Rowley J., Taylor, A. (1971) New Phytol. 71,477–481.CrossRefGoogle Scholar
  7. 7.
    Halliwell, B. (1984) Chloroplast Metabolism. Revised edition Clarendon Press, Oxford.Google Scholar
  8. 8.
    Asada, K., Takahashi, M. (1987)  In: Photoinhibition, pp.227–289.Google Scholar
  9. 9.
    Long, S. P., Nugawela, A., Bongi, G., Farage, P.K. (1987) Progress in photosynthesis research Vol IV, pp. 131–138, Biggins, J., ed. Martinus Nijhoff, Dordrecht, The Netherlands.CrossRefGoogle Scholar
  10. 10.
    Foster, J.G., Hess, J.L. (1982) Phytochemistry 21,1527–32.Google Scholar
  11. 11.
    Nakano, Y., Asada, K. (1981) Plant and Cell Physiol. 22,867–880.Google Scholar
  12. 12.
    Hossain, M.A., Nakano, Y., Asada, K. (1984) Plant Cell Fhysiol. 25,385–395.Google Scholar
  13. 13.
    Schaedle, M., Bassham, J. A. (1977) Plant Fhysiol. 59,1011–1012.CrossRefGoogle Scholar
  14. 14.
    Beyer, W.F., Fridovich, I. (1987) Analytical Biochemistry 161,559–566.PubMedCrossRefGoogle Scholar
  15. 15.
    Sedmak, J.J., Grossman, S.E. (1978) Analytical Biochemistry. 79,544–552.CrossRefGoogle Scholar
  16. 16.
    Badger, M., (1985). Ann. Rev. Plant Physiol. 36,27–53.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Leland S. Jahnke
    • 1
  • Mark R. Hull
    • 1
  • Stephen P. Long
    • 1
  1. 1.Dept. of BiologyUniv. of EssexColchester, EssexUK

Personalised recommendations