Advertisement

Adaptation of Chlamydomonas reinhardtii High CO2-Requiring Mutants to Limiting CO2

  • Martin H. Spalding
  • Kensaku Suzuki
  • Anne M. Geraghty

Abstract

Chlamydomonas reinhardtii and other unicellular green algae use an energy-requiring, CO2-concentrating system, inducible by limiting inorganic carbon (Ci) concentrations, to increase intracellular CO2 concentrations (1). Operation of the CO2-concentrating system results in a high affinity for Ci in photosynthesis. Increased intracellular CO2 also reduces photorespiration and O2 inhibition of photosynthesis by competitive inhibition of RuBP oxygenase. The CO2-concentrating system involves active transport of Ci and includes CA as a component. This system apparently is only fully functional when cells adapt to low CO2 (air-adapted cells), since cells exhibit much lower affinity for Ci when grown at 5% CO2 (CO2-enriched cells).

Keywords

Unicellular Green Alga C02R Mutant Defective Component C02R Strain Soluble Polypeptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Badger, M.R. (1987) In The Biochemistry of Plants, a Comprehensive Treatise (Hatch, M.D., Boardman, N.K., eds.), Vol 10, Photosynthesis., pp 219–274, Academic Press, San Diego.Google Scholar
  2. 2.
    Badger, M.R., Kaplan, A. and Berry, J.A. (1980) Plant Physiol. 66,407–413PubMedCrossRefGoogle Scholar
  3. 3.
    Bailly, J. and Coleman, J.R. (1988) Plant Physiol. 87,833–840PubMedCrossRefGoogle Scholar
  4. 4.
    Coleman, J.R., Berry, J.A., Togasaki, R.T. and Grossman, A.R. (1984) Plant Physiol. 76,472–477PubMedCrossRefGoogle Scholar
  5. 5.
    Manuel, L.J. and Moroney, J.V. (1988) Plant Physiol. 88,491–496PubMedCrossRefGoogle Scholar
  6. 6.
    Spalding, M.H. and Jeffrey, M. (1989) Plant Physiol. 89,133–137PubMedCrossRefGoogle Scholar
  7. 7.
    Moroney, J.V., Husic, H.D. and Tolbert, N.E. (1985) Plant Physiol. 79,177–183PubMedCrossRefGoogle Scholar
  8. 8.
    Spalding, M.H., Spreitser, R.J. and Ogren, W.L. (1983) Plant Physiol. 73,273–276PubMedCrossRefGoogle Scholar
  9. 9.
    Spalding, M.H., Spreiteer, R.J. and Ogren, W.L. (1983) Plant Physiol. 73,268–272PubMedCrossRefGoogle Scholar
  10. 10.
    Moroney, J.V., Tolbert, N.E. and Sears, B.B. (1986) Mol. Gen. Genet. 204,199–203CrossRefGoogle Scholar
  11. 11.
    Susuki, K. and Spalding, M.H. (1989) Plant Physiol. 90,1195–1200CrossRefGoogle Scholar
  12. 12.
    Moroney, J.V., Togasaki, R.K., Husic, H.D. and Tolbert, N.E. (1987) Plant Physiol. 84,757–761PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Martin H. Spalding
    • 1
  • Kensaku Suzuki
    • 2
  • Anne M. Geraghty
    • 1
  1. 1.Botany DepartmentIowa State UniversityAmesUSA
  2. 2.Institute of Biological SciencesUniversity of TsukubaTsukuba, Ibaraki 305Japan

Personalised recommendations