Advertisement

Differential Sensitivity Toward Sulfate Inhibition Among PSII Complexes in Barley Thylakoids

  • M. Beauregard
  • P. C. Meunier
  • R. Popovic

Abstract

Oxygen evolution proceeds through a four step mechanism, the S-state cycle, with each step denoted by Sn, n varying between 0 and 3. The removal of chloride by sulfate incubation results in a reversible decrease of O2 evolution activity (1,2,3). Sulfate treatment of photosystem II (PSII) impairs the advancement of the S-state cycle to the S3 state (4,5). Under flashing light, the functionment of the OEC can be characterized by the probability of a ‘miss’ in the advancement of the S-states. Partial, random blockage of the S-state cycle rise the miss probability while the total blockage of a part of PSII centers (e.g. by DCMU) do not affect the miss probability (6).

Keywords

Oxygen Evolution PSII Complex PSII Photochemistry Sulfate Treatment PSII Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Izawa, S., Heath, R.L. and Hind, G. (1969) Biochim. Biophys. Acta 180, 388–393.PubMedCrossRefGoogle Scholar
  2. 2.
    Itoh, S. and Uwano, S. (1986) Plant Cell Physiol. 27, 25–36.Google Scholar
  3. 3.
    Vass, I., Ono, T.-A. and Inoue, Y. (1987) Biochim. Biophys. Acta 892, 224–235.CrossRefGoogle Scholar
  4. 4.
    Ono, T., Zimmermann, J.L., Inoue, Y. and Rutherford, A.W. (1986) Biochim. Biophys. Acta 851, 193–201.CrossRefGoogle Scholar
  5. 5.
    Theg, S., Jursinic, P. and Homann, P.H. (1984) Biochim. Biophys. Acta 766, 636–646CrossRefGoogle Scholar
  6. 6.
    Joliot, P., and Kok, B. (1975) In Bioenergietics of Photosynthesis (Govindjee, ed.), pp. 387–412, Academic Press, New York.Google Scholar
  7. 7.
    Melis A. and Homann, P.H. (1975) Photochem. Photobiol. 23, 343–350.CrossRefGoogle Scholar
  8. 8.
    Masojidek, J., Droppa, M. and Horvath, G. (1987) Biochim. Biophys. Acta 894, 49–58.CrossRefGoogle Scholar
  9. 9.
    Melis, A. (1985) Biochim. Biophys. Acta 808, 334–342.CrossRefGoogle Scholar
  10. 10.
    Beauregard, M. and Popovic, R. (1988) J. Plant Physiol. 133, 615–619.CrossRefGoogle Scholar
  11. 11.
    Meunier P.C. and Popovic, R. (1988) Rev. Sci. Instr. 59, 486–491.CrossRefGoogle Scholar
  12. 12.
    Meunier, P.C. and Popovic, R. (1988) Photosynth. Res. 15, 271–279.CrossRefGoogle Scholar
  13. 13.
    Meunier, P.C. and Popovic, R. (1989) Photosynth. Res. in press.Google Scholar
  14. 14.
    Meunier, P.C. and Popovic, R. (1989) Photosynth. Res. in press.Google Scholar
  15. 15.
    Morissette, J.-C., Meunier, P.C. and Popovic, R. (1988) Rev. Sci. Instr. 59, 934–936CrossRefGoogle Scholar
  16. 16.
    Owens, T.G. (1986) Photochem. Photobiol. 43, 535–544.CrossRefGoogle Scholar
  17. 17.
    Forbush B., Kok, B. and McGloin, M. (1971) Photochem. Photobiol. 14, 307–321.CrossRefGoogle Scholar
  18. 18.
    Beauregard, M. (1988) Ph. D. Thesis, Universite du Quebec a Trois-Rivieres.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • M. Beauregard
    • 1
  • P. C. Meunier
    • 1
  • R. Popovic
    • 1
  1. 1.C.R.P.Universite du Quebec a Trois-RivieresTrois-RivieresCanada

Personalised recommendations