Advertisement

Transfer of Redox Equivalents Between Subcellular Compartments of a Leaf Cell

  • H. W. Heldt
  • D. Heineke
  • R. Heupel
  • S. Krömer
  • B. Riens

Abstract

In a plant cell the redox reactions involved in the photosynthetic assimilation of CO2 and nitrate are located in four different compartments; the chloroplast stroma, the mitochondrial matrix, the peroxisomal compartment and the cytosol. The present report deals with the question in which way redox equivalents can be transferred between these different compartments and how the redox processes in the various compartments can be coordinated. The experiments shown in the following have all been carried out with spinach leaves grown in hydroponic culture in a 9 h light 15 h dark cycle.

Keywords

Hydroponic Culture Spinach Leave Glutamate Oxaloacetate Transaminase Chloroplast Stroma Redox Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

Mal

malate

OAA

oxaloacetate

MDH

malate dehydrogenase

GOT

glutamate oxaloacetate transaminase

2-OG

2-oxoglutarate

OH Pyr

hydroxypyruvate

Glc6P

glucose-6-pohsphate

RuBP

Ribulose-1.5-bisphosphate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dietz, K.J., Heber, U. (1984) Biochim. Biophys. Acta 767, 432–443CrossRefGoogle Scholar
  2. 2.
    Badger, M.R., Lorimer, G.H. (1981) Biochemistry 20, 2219–2225PubMedCrossRefGoogle Scholar
  3. 3.
    Ashton, A.R. (1982) FEBS Letters, 145, 1–7CrossRefGoogle Scholar
  4. 4.
    Veech, R.L., Eggleston, L.V., Krebs, H.A. (1969) Biochem. J. 115, 609–619PubMedGoogle Scholar
  5. 5.
    Sanchez, J., Heldt, H.W. (1989) Botanica Acta, in printGoogle Scholar
  6. 6.
    Bücher, T., Klingenberg, M. (1958) Angew. Chemie 70, 552–570CrossRefGoogle Scholar
  7. 7.
    Gerhardt, R., Heldt, H.W. (1984) Plant Physiol. 75, 542–547PubMedCrossRefGoogle Scholar
  8. 8.
    Hatch, M.D., Dröscher, L., Heldt, H.W. (1984) FEBS Lett. 178, 15–19CrossRefGoogle Scholar
  9. 9.
    Scheibe, R. (1987) Physiol. Plantarum, 71, 393–400CrossRefGoogle Scholar
  10. 10.
    Ebbighausen, H., Hatch, M.D., Lilley, R.McC., Krömer, S., Stitt, M., Heldt, H.W. (1987) Plant Mitochondria (A.L. Moore, R.B. Beechey, eds.) Plenum Publishing Co. pp. 171–180CrossRefGoogle Scholar
  11. 11.
    Zoglowek, C, Krömer, S., Heldt, H.W. (1988) Plant Physiol. 87, 109–115PubMedCrossRefGoogle Scholar
  12. 12.
    Ebbighausen, H., Chen, J., Heldt, H.W. (1985) Biochim. Biophys. Acta 810, 184–199CrossRefGoogle Scholar
  13. 13.
    Liang, Z., Huang, A.H.C. (1983) Plant Physiol. 73, 147–152PubMedCrossRefGoogle Scholar
  14. 14.
    Sharkey, T.D. (1988) Physiol. Plant. 73, 147–152CrossRefGoogle Scholar
  15. 15.
    Lilley, R.McC., Stitt, M., Mader, G., Heldt, H.W. (1982) Plant Physiol. 70, 965–970PubMedCrossRefGoogle Scholar
  16. 16.
    Krömer, S., Stitt, M., Heldt, H.W. (1988) FEBS Lett. 226, 352–356CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • H. W. Heldt
    • 1
  • D. Heineke
    • 1
  • R. Heupel
    • 1
  • S. Krömer
    • 1
  • B. Riens
    • 1
  1. 1.Institut für Biochemie der PflanzeUniversität GöttingenGöttingenGermany

Personalised recommendations