Immunological Demonstration of Structural Differences of RuBP Carboxylase/Oxygenase in Mutants of Nicotiana tabacum

  • S. Georgi
  • A. Radunz
  • G. H. Schmid


In Nicotiana tabacum mutants are known which differ with respect to their rates of photorespiration (1–6). Thus, wild type N.t. var. John William’s Broadleaf (JWB), the aurea mutant N.t. Su/su var. Aurea and the yellow-green phenotype of N.t. var. Consolation exhibit low rates of photorespiration. On the other hand the tobacco aurea mutant Su/su and N.t. var. Consolation green are the defective mutants which exhibit especially high rates of photorespiration. But also the yellow phenotype of N.t. var. Consolation shows on the average a higher photorespiration than the yellow-green form and the wild type. A higher oxygenase activity of the bifunctional stroma enzyme RuBP carboxylase/ oxygenase is responsible for this higher rates of photorespiration. Earlier serological studies on RuBP carboxylase/oxygenase of the different tobacco plants have shown that no correlation exists between a higher concentration of the enzyme and a higher photorespiratory activity (7). With one single antiserum to the wild type enzyme no differences with respect to the molecular structure between the enzymes of the mutants and the wild type enzyme can be detected (8).


Antigenic Determinant Wild Type Enzyme RuBP Carboxylase Quantitative Binding Chloroplast Preparation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Okabe, K. (1977) Z. Naturforsch. 32c, 781–785Google Scholar
  2. 2.
    Okabe, K., Schmid, G.H. and Straub, J. (1977) Plant Physiol. 60 150–156PubMedCrossRefGoogle Scholar
  3. 3.
    Okabe, K. and Schmid, G.H. (1978) in: Proceedings of the Intern. Symposium on Chloroplast Development held on the Island Spetsai, Greece (Akoyunoglou, G. and Argyroudi-Akoyunoglou, J.H. eds.) pp. 501–506, Elsevier/North-Holland Biomedical Press, AmsterdamGoogle Scholar
  4. 4.
    Schmid, G.H., Bader, K.P., Gerster, R., Triantaphylides, C. and André, M. (1981) Z. Naturforsch. 36c, 662–671Google Scholar
  5. 5.
    Ishii, R. and Schmid G.H. (1982) Z. Naturforsch. 37c, 93–101Google Scholar
  6. 6.
    Ishii, R. and Schmid G.H. (1983) Plant & Cell Physiol. 24,1525–1533Google Scholar
  7. 7.
    Radunz, A. and Schmid, G.H. (1987) in: Progress in Photosynthesis Research III (Biggins, J. ed.) pp. 9617–9620, Martinus Nijhoff Publishers Dordrecht, The NetherlandsGoogle Scholar
  8. 8.
    Radunz, A. and Schmid, G.H. (1988) Z. Naturforsch. 43c, 554–562Google Scholar
  9. 9.
    Heidelberger, M. and Kendall, F. (1935) J. Exp. Med. 61, 563–571PubMedCrossRefGoogle Scholar
  10. 10.
    Heidelberger, M. and Kendall, F. (1935) J. Exp. Med. 62, 697–702PubMedCrossRefGoogle Scholar
  11. 11.
    Okabe, K., Codd, G.A. and Stewart, W.D.P. (1979) Nature 279, 525–527CrossRefGoogle Scholar
  12. 12.
    Bhagwat, A.S., Ramakrishna, J. and Sane, P.V. (1978) Biochem. Biophys. Res. Commun. 83, 954–962PubMedCrossRefGoogle Scholar
  13. 13.
    Nespoulous, C, Fabisch, P., Radunz, A. and Schmid, G.H. (1988) Z. Naturforsch. 43c, 717–726Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • S. Georgi
    • 1
  • A. Radunz
    • 1
  • G. H. Schmid
    • 1
  1. 1.Lehrstuhl ZellphysiologieUniversität BielefeldBielefeld 1Germany

Personalised recommendations