Photoreactivation and Photoinactivation of Photosystem II after a Complete Removal of Manganese from Pea Subchloroplast Particles

  • V. V. Klimov
  • G. Ananyev
  • S. I. Allakhverdiev
  • S. K. Zharmukhamedov
  • M. Mulay
  • U. Hegde
  • S. Padhye

Abstract

Photoinduced electron transfer and oxygen evolution are completely inhibited as a result of the complete (>98%) removal of Mn and water soluble proteins with m.w. 17,23 and 33 kD from pea photosystem II (PS-II) particles (DT-20) by means of I M tris-HCl (pH 8) and 0.5 M MgCl2/1–4/. Restoration of oxygen evolution after the treatment requires a joint addition of MnCl and CaCl2 /2–4/. Ca++ is highly specific in the reactivation (only Sr++ can replace it with a lower efficiency). At the same time, the restoration requires a very high concentration of Ca++ (10–20 mM) (Fig.1). The reactivation is observed in the absence of the proteins with m.w. 17,23 and.33 kD which are completely removed during extraction of Mn /3/ thus showing that all of them (including the 33 kD protein) are not the binding site for Mn and are not strictly necessary for oxygen evolution. When the sum of these proteins (isolated from DT-20 by I M CaCl2 /5/) is added to the particles, the reactivation is observed at much lower concentrations of Ca++ though the maximal rate of O2-evolution is not increased (Fig.1).

Keywords

Actinic Light Donor Side Acid Fixation Redox Event Chlorophyll Fluorescence Yield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klimov, V.V., Allakhverdiev, S.I., Shuvalov, V.A. and Krasnovsky, A.A. (1982) FEBS Lett. 148, 307–312PubMedCrossRefGoogle Scholar
  2. 2.
    Klimov, V.V., Ganago, LB., Allakhverdiev, S. I., Shafiev, M.A. and Ananyev, G.M. (1987) in Progress in Photosynthesis Research (Biggins, J., ed.), pp.1.5.581–1.5.584, Martinus Nijhoff Publishers, DordrechtGoogle Scholar
  3. 3.
    Shafiev, M.A., Ananyev, G.M., Allakhverdiev, S.I., Smolova, T.N. and Klimov, V.V. (1988) Biofizika (USSR) 33, 61–65Google Scholar
  4. 4.
    Ananyev, G.M., Shafier, M.A., Isaenko, T.V. and Klimov, V.V. (1988) Biofizika (USSR) 33, 265–269Google Scholar
  5. 5.
    Ono, T. and Inoue, Y. (1984) FEBS Lett. 168, 281–285CrossRefGoogle Scholar
  6. 6.
    Kulikov, A.V., Bogatyrenko, A.V., Likhtenstein, G.I., Allakhverdiev, S.I., Klimov, V.V., Shuvalov, V.A. and Krasnovsky, A.A. (1983) Biofizika (USSR) 28, 357–363Google Scholar
  7. 7.
    Garge, P., Padhye, S. and Tuchagues, J.-P. (1989) Inorganica Chimica Acta (in press)Google Scholar
  8. 8.
    Velthuys, B. (1983) in The Oxygen Evolving System of Photosynthesis (Inoue, Y. et al., eds.) pp.83–90, Academic Press, TokyoGoogle Scholar
  9. 9.
    Klimov, V.V., Shafiev, M.A. and Allakhverdiev, S.I. (1989) Photosynthesis Research (in press)Google Scholar
  10. 10.
    Shuvalov, V.A. and Krasnovsky, A.A. (1975) Biochimia (USSR) 40, 358–367Google Scholar
  11. 11.
    Ananyev, G.M. and Klimov, V.V. (1988) Dokl.Acad.Nauk SSSR 298, 1007–1111Google Scholar
  12. 12.
    Ananyev, G.M. and Klimov, V.V. (1989) Biofizika (USSR) (in press)Google Scholar
  13. 13.
    Berthold, D.A., Babcock, G.T. and Yocum, C.G. (1981) FEBS Lett. 134, 231–234CrossRefGoogle Scholar
  14. 14.
    Wydrzynski, T., Angström, J. and Vännagàrd, T. (1989) Bioch.Biophys. Acta 973, 23–28CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • V. V. Klimov
    • 1
  • G. Ananyev
    • 1
  • S. I. Allakhverdiev
    • 1
  • S. K. Zharmukhamedov
    • 1
  • M. Mulay
    • 2
  • U. Hegde
    • 2
  • S. Padhye
    • 2
  1. 1.Institute of Soil Science and PhotosynthesisUSSR Academy of SciencesPushchino, Moscow RegionUSSR
  2. 2.Department of ChemistryUniversity of PoonaIndia

Personalised recommendations