Some Similarities and Differences between Bacterial Chromatophore, Spinach Chloroplast and Yeast Mitochondrial Inorganic Pyrophosphatases

  • Margareta Baltscheffsky
  • Alauddin Pramanik
  • Maria Lundin
  • Pål Nyrén
  • Herrick Baltscheffsky

Abstract

Membrane bound inorganic pyrophosphatases (PPases) appear to play a role in energy metabolism (1,2). PPases are present in bacterial, plant and animal cells and cell organelles. Membrane bound PPases have been found in chromatophores (2), mitochondria (3) and chloroplasts (4). The membrane bound PPase from Rhodospirillum rubrum chromatophores can synthesize PPi (inorganic pyrophosphate) at the expense of light energy (1) and has been described in some detail (2). Mitochondrial membrane bound PPase has been reported to produce PPi as a result of oxidative phosphorylation (3). (Genes encoding soluble PPases of E. coli (5) and yeast (6) have been cloned and characterized). We have studied some similarities and differences between chromatophore, chloroplast and mitochondrial membrane bound PPases.

Keywords

Mitochondrial Membrane Coupling Factor Cell Organelle Spinach Chloroplast Yeast Mitochondrion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baltscheffsky, H., von Stedingk, L.V., Heldt, H.W. and Klingenberg, M. (1966) Science 153, 1120–1121PubMedCrossRefGoogle Scholar
  2. 2.
    Baltscheffsky, M. and Nyrén, P. (1984) in Bioenergetics (Ernster, L., ed.) pp. 187–2205, Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Mansurova, S.E., Shakhov, Yu.A. and Kulaev, S.I. (1977) FEBS Lett. 74, 31–34PubMedCrossRefGoogle Scholar
  4. 4.
    Gould, M. and Winget, D. (1973) Arch. Biochem. Biophys. 154, 606–613PubMedCrossRefGoogle Scholar
  5. 5.
    Lahti, R., Pitkäranta, T., Valve, E., Ilta, I., Kukko-Kalske, E. and Heinonen, J. (1988) J. Bact. 170, 5901–5907PubMedGoogle Scholar
  6. 6.
    Kolakowski, Jr.L.F., Schloesser, M. and Cooperman, B.S. (1988) Nucleic Acids Res. 16, 10441–10452PubMedCrossRefGoogle Scholar
  7. 7.
    Whately, F.R. and Arnon, D.I. (1963) Methods Enzymol. (Colowick, S.P. and Kaplan, N.O., eds.) vol. 6, pp. 308–313, Acad. Press, N.Y., LondonGoogle Scholar
  8. 8.
    Lundin, M., Pereira da Silva, L. and Baltscheffsky, H. (1987) Biochim. Biophys. Acta 890, 279–285PubMedCrossRefGoogle Scholar
  9. 9.
    Shatton, J.B., Ward, C., Williams, A. and Weinhouse, S. (1983) Anal. Biochem. 130, 114–119PubMedCrossRefGoogle Scholar
  10. 10.
    Shakhov, Yu.A., Nyrén, P. and Baltscheffsky, M. (1982) FEBS Lett. 146, 177–180PubMedCrossRefGoogle Scholar
  11. 11.
    Nyrén, P., Hajnal, K. and Baltscheffsky, M. (1984) Biochim. Biophys. Acta 766, 630–635CrossRefGoogle Scholar
  12. 12.
    Nyrén, P. and Strid, Å. (1989) Arch. Biochem. Biophys. 268, 659–666PubMedCrossRefGoogle Scholar
  13. 13.
    McCarty, R.E. and Racker, E. (1968) J. Biol. Chem. 243, 129–137PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Margareta Baltscheffsky
    • 1
  • Alauddin Pramanik
    • 1
  • Maria Lundin
    • 1
  • Pål Nyrén
    • 1
  • Herrick Baltscheffsky
    • 1
  1. 1.Dept. of Biochemistry, Arrhenius LaboratoriesUniversity of StockholmStockholmSweden

Personalised recommendations